- 康康map
-
【转自网络】
首先,我要说的是我觉得你是一名在校大学生!Data Mining不是你想的那么简单,他不单单和数学有关系,还包括了计算机领域的诸多学科。还有社会工程学、逻辑学等文科和理科的交叉学科!他是一门庞大的体系。你要是真想学我只能给你指条比较快的成才之路,后面的东西自己慢慢学都赶趟!慢慢充实自己!大学四年好好利用!学无止境!
既然是数据分析那你的高等数学必须要过硬,别着急这只是你的其他学科的基础课。其次是概率与统计,这才是正科,大学那点玩意就是糊弄人的,你要多看这方面的书。这个一定要学好!线性必须要会要精通。因为数据划分是数据挖掘里最重要的一个环节。这个就是线性范畴里的了。也要精通,学会线性分析你就发现你就学会了很多。数学有这三个底子就可以了。数学分析不要看了。因为那只是高数的延伸!
计算机你一定要懂。数据库你必须得学会。三大数据库ORACLE.SQL.MYSQL原理基本类似触类旁通!
还有就是培养你的思维,尽量缜密敏捷。这样才可以发现数据中的不同!因为有的数据挖掘是计算机处理的。有的则是纸面上的。所以必须学会记录
好了,就先这么多了。你学会了这几个就是你进军下一步的基础,这几个就够你学一阵子的了。
祝你好运哥们!
数据挖掘的起点很高——
1、统计学
2、机器学习
3、数学——图论,最优化理论等。
WEB上的数据结构更加复杂。
python语言————应该学习
抱歉,事情太多,如果不追着就忘了!我认为你作为企业员工对数据挖掘感兴趣,最主要的就是从应用和解决问题开始,所以我想把数据挖掘这个狭义定义的内容改成你应该对数据分析感兴趣,数据挖掘只是数据分析的一个重要工具和解决方法之一!
数量统计知识方面:我认为统计思想是数学在实践中最重要的体现,但对于实际工作者最重要的是掌握统计思想,其实统计理论非常复杂,但实际应用往往是比较简单的!比如,很多人都在大学学了假设检验,但实际应用中假设就是看P值是否小于0.05,但是H0是什么?拒绝还是接受的是什么现实问题;要理解!
掌握软件问题:从软件角度学,是非常好的思路,我基本上就是这样学的。我常说编软件的人最懂理论,否则编不出来,编软件的人最知道应用,否则软件买不出去;现在软件越来越友好,把软件自带案例做一遍,你会自觉不自觉的掌握软件解决问题的思路和能解决的问题类型;
数据仓库问题:OLAP和数据挖掘是数据仓库建立基础上的两个增值应用,从企业整体角度,数据挖掘应该建立在企业数据仓库完备的基础上。所以说数据仓库是针对企业级数据挖掘应用提出的,但我们应该记住,企业从来不是为了数据挖掘建立数据仓库,而是因为有了数据仓库后必然会提出数据挖掘的需求!现在随着数据挖掘软件的工具智能化,以及数据仓库和ETL工具的接口友好,对数据库层面的要求越来越少;
数学不好可能反应了一个人思考问题的方式或深入理解问题的能力,但数学不是工具是脑具,不断解决问题的过程可以让我们思考问题更数学化!
沈浩老师建议:
不急,一步一步来!先把本职工作中的数据分析问题理解了,干好了!
熟练玩好Excel软件工具,这个可以看《Excel高级应用与数据分析》我写的书,当然有很多Excel论坛和网站,从我的博客就可以连接到。
学习好统计分析方法,我不是单指统计原理,而是统计分析方法,比如回归分析,因子分析等,不断进入统计分析解决问题的思考方式;这个可以看看SPSS软件方面的书和数据案例,通过软件学习解决数据分析的统计问题,这方面的书很多,当然你也可以关注我的博客,不断增加统计分析方法解决数据分析问题的思路,自己对照着完成!
在上述问题有了比较好的理解后,也就是你应该算是一个数据分析能手的时候,开始进入数据挖掘领域,你会发现用数据挖掘思想解决问题具有智能化、自动化的优势,接下来,你需要考虑数据建模的过程,通过学习Clementine软件或SAS的挖掘工具,不断理解数据挖掘与原来的数据分析工具有什么不同或优势!
当前面都是了解并且能够得心应手后,你就要有针对性的掌握你工作所在行业的问题,例如:电信行业的解决方案问题:客户流失、客户价值、客户离网、客户保持、客户响应、客户交叉销售等商业模型,同时与数据分析和数据挖掘统一在一起的解决方案!
接下来,你应该掌握数据库的一些原理和操作,特别是SQL语言的方式
你到了这个阶段,就应该有全面解决问题的能力,比如挖掘出来的知识或商业规则如何推送到营销平台上等等
梳理自己的知识结构,不仅会操作,现在你应该成为专家了,要能够宣扬你的知识能力和领导力,当然也要表明你在数据挖掘领域的专业特长
要经常帮助同事和行业朋友,比如帮助解决数据分析问题,帮助咨询,甚至给大家讲课,这对你的知识梳理和能力的提高非常重要,你的自信心会更强!
有兴趣,可以建立一个博客或什么,不断写点东西,经常思考和总结
结交广泛的朋友!
关于入门的教材:
互联网,其实不用买什么书网络基本都有;要有好的搜索能力,当然包括搜各种软件!
SPSS和Clementine软件的说明和案例,都做一遍;
《数据挖掘——客户关系管理的艺术》
《调查研究中的统计分析法》
《Excel高级应用与数据分析》
《数据展现的艺术》
- 苏萦
-
第1本《谁说菜鸟不会数据分析入门篇》
很有趣的数据分析书!基本看过就能明白,以小说的形式讲解,很有代入感。包含了数据分析的结构化思维、数据处理技巧、数据展现的技术,很能帮我们提升职场竞争能力。找不到工作的,学好了它,自然没问题。
第2本《拯救你的Excel数据的分析、处理、展示(动画版)》
一本用手机看的Excel操作书,大部分例子都配置了二维码,手机扫扫就能看,基本上可以躺着把书学了。所有数据的分析、处理也都带了职场范例(有会计、HR、销售场景),很贴合实际。拯救我们小白的Excel,职场加薪不是梦想!
第3本《Excel图表之道:如何制作专业有效的商务图表》
职场大牛的书,教我们做图表的,好看到不能再好看。可以设计和制作达到杂志级质量的、专业有效的商务图表。相信平时我们很难做到吧,看了你就知道,也许一切没那么难。
第4本《绝了!Excel可以这样用:数据分析经典案例实战图表书》
挺好的一个系列,都是Excle常用的技巧,适合销售和HR。也是职场故事,很接地气,带视频的,全都是Excel数据分析的常用理念和方法。
第5本《深入浅出数据分析》
深入浅出系列是对新手非常友好的丛书,用生动但啰嗦的语言讲解案例。厚厚的一本书翻起来很快。本书涉及的基础概念比较广,包含一点统计学知识,学下来对数据分析思维会有一个大概了解。
第6本《MySQL必知必会》
如果真想买书看,可以看这本,适合新手向的学习,看基础概念和查询相关的章节即可。网络上大部分MySQL都是偏DBA的。
第7本《深入浅出统计学》
大概是最啰嗦的深入浅出系列,从卖橡皮鸭到赌博机的案例,囊括了常用的统计分析如假设检验、概率分布、描述统计、贝叶斯等。
第8本《网站分析实战》
互联网不再是网站的天下,但是移动端依旧有Web,我们在朋友圈看到的所有H5活动、第三方内容等,都是依托网页实现。网站的数据分析依旧有存在空间,网站的数据指标还是能够指导我们运营!
第9本《深入浅出Python》
还是深入浅出系列,完全适合零基础的新人。需要注意的是,编程学习不同于其他知识,如果计算机基础不稳固,在使用中会遇到各类问题。知其然不知其所以然!
第10本《Python学习手册》
对于拥有编程基础的人,这本书系无巨细的有些啰嗦,不过对新人,可以避免不必要的坑。把它当作一本工具文档吧,当遇到不理解的内容随时翻阅。
第11本《利用Python进行数据分析》
这本书是你学习python不二之选,对着书,着重学习numpy,pandas两个包!每段代码都敲打一遍,千万行的数据清洗基本不会有大问题了。
第12本《R语言实战》
R语言的入门书籍,从数据读取到各类统计函数的使用。虽然没有涉及机器学习,依靠这本书入门R是绰绰有余了。
第13本《统计学:从数据到结论》
这本书是将R语言和统计学结合的教材,可以利用这本书再复习一遍统计知识。
第14本《深入浅出SQL》
带你进入SQL语言的心脏地带,从使用INSERT和SELECT这些基本的查询语法到使用子查询(subquery)、连接(join)和事务(transaction)这样的核心技术来操作数据库。到读完《深入浅出SQL》之时,你将不仅能够理解高效数据库设计和创建,还能像一个专家那样查询、归一(normalizing)和联接数据。你将成为数据的真正主人。
第15本《数据挖掘导论》
这本书绝对是一本良心教材,拿到手从第一章开始阅读,能看多少就看多少。但是要尽量多看点,因为此书你可能要看一辈子的~~
第16本《算法导论中文版》
本书将严谨性和全面性融为一体,深入讨论各类算法,并着力使这些算法的设计和分析能为各个层次的读者接受。算法以英语和伪代码的形式描述,具备初步程序设计经验的人就能看懂;说明和解释力求浅显易懂,不失深度和数学严谨性。
上面的书籍都是PDF版
视频教材的有:
Python入门教程完整版(懂中文就能学会)资料
Python入门教程完整版(懂中文就能学会)视频
Mysql从入门到精通全套视频教程
8天深入理解python教程
大数据Hadoop视频教程,从入门到精通
Python就业班
Python标准库(中文版)
数学建模0基础从入门到精通,全套资源
0基础Python实战-四周实现爬虫系统
麦子学院招牌课程[明星python编程视频VIP教程][200G](价值9000元)
从零基础到数据分析师,帮你拿到年薪50万!
- nicf
-
数据分析科学并没有一个独立的学科体系,统计学,机器学习,数据挖掘,数据库,分布式计算,云计算,信息可视化等技术或方法来对付数据。
数据分析工作的三大步骤:
1、原始数据要经过一连串收集、提取、清洗、整理等等的预处理过程,才能形成高质量的数据;
2、我们想看看数据“长什么样”,有什么特点和规律;
3、按照自己的需要,比如要对数据贴标签分类,或者预测,或者想要从大量复杂的数据中提取有价值的且不易发现的信息,都要对数据建模,得到output。
学习数据分析的三大阶段:
①初级阶段(推荐看书)
1.学习基础的统计、概率等理论知识,这些知识是你前进的基石;
2.学一点怎么在真实业务中应用数据分析技巧!
②中间阶段
算的上公示,看得懂业务,你要边学边用,这样才能学的更快,收货更多!
③高级进阶(系统性的学一些数据分析的课程)
中国商业联合会数据分析专业委员会,是经国务院国有资产监督管理委员会审核同意、中华人民共和国民政部正式批准和登记的中国数据分析行业唯一的行业协会。CDA数据分析员是由数据分析行业主管协会—中国商业联合会数据分析专业委员主办,通过考试者可以同时获得工业和信息化部和商业协会颁发的职业技能证书,该证书代表数据分析人员的技能水平,是企、事业单位选拔和聘用专业人才的主要参考依据。
数据分析的学习是个漫长的过程,一部分自学,另一部分行业前辈的指导,希望帮的到您
- echo
-
首先我说说这两种方向共同需要的技术面,当然以下只是按照数据分析入门的标准来写:
1. SQL(数据库),我们都知道数据分析师每天都会处理海量的数据,这些数据来源于数据库,那么怎么从数据库取数据?如何建立两表、三表之间的关系?怎么取到自己想要的特定的数据?等等这些数据选择问题就是你首要考虑的问题,而这些问题都是通过SQL解决的,所以SQL是数据分析的最基础的技能,零基础学习SQL可以阅读这里:SQL教程_w3cschool
2. 统计学基础,数据分析的前提要对数据有感知,数据如何收集?数据整体分布是怎样的?如果有时间维度的话随着时间的变化是怎样的?数据的平均值是什么?数据的最大值最小值指什么?数据相关与回归、时间序列分析和预测等等,这些在网易公开课上倒是有不错的教程:哈里斯堡社区大学公开课:统计学入门_全24集_网易公开课
3.Python或者R的基础,这一点是必备项也是加分项,在数据挖掘方向是必备项,语言相比较工具更加灵活也更加实用。至于学习资料:R语言我不太清楚,Python方向可以在廖雪峰廖老师的博客里看Python教程,面向零基础。
再说说两者有区别的技能树:
1.数据挖掘向
我先打个前哨,想要在一两个月内快速成为数据挖掘向的数据分析师基本不可能,做数据挖掘必须要底子深基础牢,编程语言基础、算法、数据结构、统计学知识样样不能少,而这些不是你自习一两个月就能完全掌握的。
所以想做数据挖掘方向的,一定要花时间把软件工程专业学习的计算机基础课程看完,这些课程包括:数据结构、算法,可以在这里一探究竟:如何学习数据结构?
在此之后你可以动手用Python去尝试实现数据挖掘的十八大算法:数据挖掘18大算法实现以及其他相关经典DM算法
2.产品经理向
产品经理向需要你对业务感知能力强,对数据十分敏感,掌握常用的一些业务分析模型套路,企业经常招聘的岗位是:商业分析、数据运营、用户研究、策略分析等等。这方面的学习书籍就很多,看得越多掌握的方法越多,我说几本我看过的或者很多人推荐的书籍:《增长黑客》、《网站分析实战》、《精益数据分析》、《深入浅出数据分析》、《啤酒与尿布》、《数据之魅》、《Storytelling with Data》
- CarieVinne
-
首先,要想清职业目标。明确自己是否真的喜欢数据分析,是否真的想往这方面发展。确定职业方向后,再思考如何入门数据分析。数据分析不同目标的发展路径不同,入门所需要的技能也不同。
第一种,在业务相关部门的数据分析人员,最主要的职责是发现业务问题,提供决策支持。
第二种,是技术相关部门的数据分析人员。主要职责是支持业务部门的数据提取、数据库管理、数据挖掘建模的系统实现。
不管是哪个方向,统计学的基础知识是必须的。另外,要找一个好导师,可以少走很多弯路。各种技能最关键的是要实践。
- 北有云溪
-
首先要学习一些业务分析的逻辑,然后借助工具去分析和展示。
1、Excel起步
作为一个入门级工具,excel是快速分析数据的理想工具,也能构建供内部使用的数据图。
2、SQL起步
如果你了解sql,说明已经具备了快速提升的基础
3、R语言起步
作为用来分析大数据集的统计组件包,R是一个非常复杂的工具,掌握R以为着可以更快上手一些专业分析工具和服务
4、BI工具tableau/FineBI起步
作为大数据前端分析工具,都很容易上手
5、如果想要深入学习数据分析的话,也可以多看一些关系数据挖掘、业务分析类的书籍哦。
- 大鱼炖火锅
-
总体来说,先学基础,再学理论,最后是工具1、学习数据分析基础知识,包括概率论、数理统计2、你的目标行业的相关理论知识。比如金融类的,要学习证券、银行、财务等各种知识。3、学习数据分析工具,如sas、spss,甚至excel也可以(数据分析模块的功能很强大)切记,第一步是必不可少的,是数据分析的基础。
- Chen
-
近日,由中国软件网、海比研究联合中国软件行业协会应用软件产品云服务分会,发布了《2017年中国大数据可视化市场研究报告》。
东软凭借两款大数据可视化产品,在2017年中国大数据可视化市场份额排名中,位居第三,并成为收入增长最快的厂商,增长率超过100%!
不可否认,整合复杂数据的收集、分析和可视化,并从数据中获得价值,是未来的趋势。而对于目前企业最关心的大数据可视化,今后的一个基本需求趋势——让数据可视化不仅仅是可见,更要求可控。大数据可视化,是把数据分析的结果以图形化、图像化的方式展现,帮助人们理解复杂的数据,快速获得数据的价值。
在大数据秒级分析的基础上,东软的DataViz,在数据可视化领域不断突破。近百种数据可视化形式,GIS地图可视化、3D可视化,一组杂乱无序的业务数据,分分钟就能变成炫酷动图。
DataViz 定位敏捷BI,面向业务人员提供自助式数据探索与可视化分析服务。平台提供可视化接入数据源、可视化定义数据集、自助式可视化分析工具和交互式故事板等功能,旨在以自助式数据探索与可视化分析方式,帮助企业用户快速准确地洞悉数据背后隐藏的商业价值,让企业决策更“有据可依”。
DataViz 提供固定分辨率功能,可以按照大屏的尺寸进行精准的可视化布局和实现,并可以按照长边铺满等进行宽高适应。与此同时,DataViz可以自由设定背景图片、背景色等,提供实时效果预览,轻松在本地电脑即可制作大屏可视化仪表板,例如在大屏界面中,通过地图、折线图、柱状图、列表等图表,展现数据分析大屏。
我们置身于大数据时代,有效的利用大数据决定着我们未来,而大数据可视化工具,是您必不可少的工具。从大数据分析到大数据展现,这次,东软不仅拼实力,还拼颜值!
- 侠客
-
首先,要想清职业目标。明确自己是否真的喜欢数据分析,是否真的想往这方面发展。确定职业方向后,再思考如何入门数据分析
- 站长在线
-
首先说一下数据分析总的基础知识,需要注意好学科知识,学科知识包括很多,比如统计学、数学、社会学、经济金融、计算机等内容,
下面就给大家具体讲解一下这个内容:统计学需要学习参数检验、非参检验、回归分析等知识;数学需要学习线性代数、微积分等知识;社会学主要是一些社会学量化统计的知识,如问卷调查与统计分析;还有就是一些社会学的知识,这些对于从事营销类的数据分析人员比较有帮助;如果是从事这个行业的数据分析人员,经济金融知识是必须的;从事数据分析工作的人必须了解你使用的数据是怎么处理出来的,要了解数据库的结构和基本原理,同时如果条件充足的话,还能有足够的能力从数据库里提取你需要的数据(比如使用SQL进行查询),这种提取数据分析原材料的能力是每个数据从业者必备的。
这些专业知识不是一时半会能够全面掌握的,学习的唯一捷径就是看书、看视频讲解,看权威的书籍、看全面的知识。
然后说说软件操作,在进行数据分析工作的时候一定要会使用数据分析的工具,这样才能够提高数据分析的效率。一般数据分析软件有Microsoft Office软件,比如excel、word、powerpoint。SPSS、SAS、R、MatlabMindManager、MindMapper等等。在此需要说明的一点是:软件只是帮助我们完成任务的工具。并不是我们只要学好的软件操作就能很好地完成任务,因为与操作相比,如何解释最后的结果要重要的多。
最后就是行业知识与工作经验:做数据分析一定得和自己所从事的行业紧密相关,不结合业务的数据分析无异于纸上谈兵。而需要要用到数据分析的行业又多的数不清,一句话,只要有数据的地方就需要有数据分析。
以上的内容就是如何学习数据分析需要注意的地方了,大家在学习数据分析的时候一定要注意好上面提到的内容,这样才能够做好数据分析的工作,
- 振金
-
数据现今可谓变得越来越常见,小到每个人的社交圈、消费网络、运动....大到企业的销售运营、规划决策、产品生产、交通网络....转行到数据分析领域的人也越来越多。但对于在职人员来说,完全放弃目前的工作去投身学习数据分析,压力会非常大,毕竟生活成本摆在那。于是乎,在业余时间学习数据分析,作为自己日后的职业提升或转行准备,也不失为一种权宜之计。 不过,如何在业余时间学好数据分析,这也是一个值得思考好和规划好的事情。
最重要的一-点就是, 我们得清楚企业对数据分析师的基础技能需求是什么。这样我们才能有的放矢。我大抵总结如下:
(1) SQL数据库的基本操作,会基本的数据管理
(2)会用Excel/SQL做基本的数据分析和展示(3)会用脚本语言进行数据分析,Python or R
(4)有获取外部数据的能力,如爬虫
(5)会基本的数据可视化技能,能撰写数据报告
(6)熟悉常用的数据挖掘算法:回归分析、决策树、随机森林、支持向量机等之后,怎么安排自己的业余时间就看个人了。总体来说,先学基础,再学理论,最后是工具。基本上,每一门语言的学习都是要按照这个顺序来的。
1、学习数据分析基础知识,包括概率论、数理统计。基础这种东西还是要掌握好的啊,基础都还没扎实,知识大厦是很容易倒的哈。
2、你的目标行业的相关理论知识。比如金融类的,要学习证券、银行、财务等各种知识,不然到了公司就一脸懵逼啦。
3、学习数据分析工具,软件结合案列的实际应用,关于数据分析主流软件有(从上手度从易到难):Excel, SPSS, stata, R, Python, SAS等。
4、学会怎样操作这些软件,然后是利用软件从数据的清洗开始一步步进行处理, 分析,最后输出结果,检验及解读数据。
如果是实在不懂,还可以去CDA官网上找些视频课程看。切记,第-步是必不可少的,是数据分析的基础。