- 真可云
-
本文将就开关电源设计中如何正确的选择工作频率分享设计技巧。
为您的电源选择正确的工作频率
为您的电源选择最佳的工作频率是一个复杂的权衡过程,其中包括尺寸、效率以及成本。通常来说,低频率设计往往是最为高效的,但是其尺寸最大且成本也最高。虽然调高频率可以缩小尺寸并降低成本,但会增加电路损耗。接下来,我们使用一款简单的降压电源来描述这些权衡过程。
我们以滤波器组件作为开始。这些组件占据了电源体积的大部分,同时滤波器的尺寸同工作频率成反比关系。另一方面,每一次开关转换都会伴有能量损耗;工作频率越高,开关损耗就越高,同时效率也就越低;其次,较高的频率运行通常意味着可以使用较小的组件值。因此,更高频率运行能够带来极大的成本节约。
图1.1显示的是降压电源频率与体积的关系。频率为100kHz时,电感占据了电源体积的大部分(深蓝色区域)。如果我们假设电感体积与其能量相关,那么其体积缩小将与频率成正比例关系。由于某种频率下电感的磁芯损耗会极大增高并限制尺寸的进一步缩小,因此在此情况下上述假设就不容乐观了。如果该设计使用陶瓷电容,那么输出电容体积(褐色区域)便会随频率缩小,即所需电容降低。另一方面,之所以通常会选用输入电容,是因为其具有纹波电流额定值。该额定值不会随频率而明显变化,因此其体积(黄色区域)往往可以保持恒定。另外,电源的半导体部分不会随频率而变化。这样,由于低频开关,无源器件会占据电源体积的大部分。当我们转到高工作频率时,半导体(即半导体体积,淡蓝色区域)开始占据较大的空间比例。
该曲线图显示半导体体积本质上并未随频率而变化,而这一关系可能过于简单化。与半导体相关的损耗主要有两类:传导损耗和开关损耗。同步降压转换器中的传导损耗与MOSFET的裸片面积成反比关系。MOSFET面积越大,其电阻和传导损耗就越低。
开关损耗与MOSFET开关的速度以及MOSFET具有多少输入和输出电容有关。这些都与器件尺寸的大小相关。大体积器件具有较慢的开关速度以及更多的电容。图1.2显示了两种不同工作频率(F)的关系。传导损耗(Pcon)与工作频率无关,而开关损耗(PswF1和PswF2)与工作频率成正比例关系。因此更高的工作频率(PswF2)会产生更高的开关损耗。当开关损耗和传导损耗相等时,每种工作频率的总损耗最低。另外,随着工作频率提高,总损耗将更高。
但是,在更高的工作频率下,最佳裸片面积较小,从而带来成本节约。实际上,在低频率下,通过调整裸片面积来最小化损耗会带来极高成本的设计。但是,转到更高工作频率后,我们就可以优化裸片面积来降低损耗,从而缩小电源的半导体体积。这样做的缺点是:如果我们不改进半导体技术,那么电源效率将会降低。
如前所述,更高的工作频率可缩小电感体积,所需的内层芯板会减少。更高频率还可降低对于输出电容的要求。有了陶瓷电容,我们就可以使用更低的电容值或更少的电容。这有助于缩小半导体裸片面积,进而降低成本。
相关推荐
开关电源的设计步骤
开关电源主要有三部分组成:PWM控制模块、开关管(BJT、MOSFET、IGBT等)和滤波器(电感、电容),隔离开关电源还包括隔离变压器。当然还要考虑EMI,PFC,即功率因数校正)的设计。在小功率的电源中还存在一些线性电源,但在中、大功率的电源中,线性电源已经被开关电源所取代。随着控制芯片频率的提高和功能的增多,高速和低功耗功率开关管的研制成功,开关电源是未来电源主要的发展方向。扩展资料:注意事项:1、开关电源的输入电压可以是220V或是110V,根据电路设计合理选择输入电压档位。否则会造成开关电源的损害。2、注意分辨开关电源输出电压接线柱的地线端和零线端。并确保开关电源接地可靠。3、开关电源的金属外壳电源外壳一般与地(FG)连接,要可靠接地,以确保安全,不可误将外壳接在零线上。4、为了达到充分散热的,一般开关电源宜安装在空气对流条件较好的位置、或安装在机箱壳体上通过壳体将热传达室外出去。5、开关电源出厂以前加阻性负载进行测试,若需用在容性或感性为负载时,应事先在订货合同中加以说明。2023-08-26 09:24:561
开关电源设计工作原理注意事项盘点
开关电源在设计中必须具有过流、过热、短路等保护功能,故在设计时应首选保护功能齐备的开关电源模块,并且其保护电路的技术参数应与用电设备的工作特性相匹配,以避免损坏用电设备或开关电源。那么开关电源设计还要那些要注意的地方呢?【开关电源工作原理】顾名思义,开关电源就是利用电子开关器件(如晶体管、场效应管、可控硅闸流管等),通过控制电路,使电子开关器件不停地“接通”和“关断”,让电子开关器件对输入电压进行脉冲调制,从而实现DC/AC、DC/DC电压变换,以及输出电压可调和自动稳压。开关电源一般有三种工作模式:频率、脉冲宽度固定模式,频率固定、脉冲宽度可变模式,频率、脉冲宽度可变模式。前一种工作模式多用于DC/AC逆变电源,或DC/DC电压变换;后两种工作模式多用于开关稳压电源。另外,开关电源输出电压也有三种工作方式:直接输出电压方式、平均值输出电压方式、幅值输出电压方式。同样,前一种工作方式多用于DC/AC逆变电源,或DC/DC电压变换;后两种工作方式多用于开关稳压电源。根据开关器件在电路中连接的方式,目前比较广泛使用的开关电源,大体上可分为:串联式开关电源、并联式开关电源、变压器式开关电源等三大类。其中,变压器式开关电源(后面简称变压器开关电源)还可以进一步分成:推挽式、半桥式、全桥式等多种;根据变压器的激励和输出电压的相位,又可以分成:正激式、反激式、单激式和双激式等多种;如果从用途上来分,还可以分成更多种类。【开关电源设计应注意事项】(1)选用合适的输入电压规格;(2)选择合适的功率。为了使电源的寿命增长,建议选用多30%输出功率额定的机种。例如若系统需要一个100W的电源,则建议挑选大于130W输出功率额定的机种,以此类推可有效提升电源的寿命。(3)考虑负载特性。如果负载是马达、灯泡或电容性负载,当开机瞬间时电流较大,应选用合适电源以免过载。如果负载是马达时应考虑停机时电压倒灌。(4)此外尚需考虑电源的工作环境温度,及有无额外的辅助散热设备,在过高的环温电源需减额输出。环温对输出功率的减额曲线(5)根据应用所需选择各项功能:保护功能:过电压保护(OVP)、过温度保护(OTP)、过负载保护(OLP)等。应用功能:信号功能(供电正常、供电失效)、遥控功能、遥测功能、并联功能等。特殊功能:功因矫正(PFC)、不断电(UPS)(6)选择所需符合的安规及电磁兼容(EMC)认证。2023-08-26 09:25:131
开关电源设计的工作原理是什么开关电源维修方法
说起开关电源了,它是我们生活是不能缺少的东西,有些人对于开关电源设计方面不是太了解,那接下来,就由装修之用网的小编为你们大家介绍一下关于,开关电源设计的工作原理是什么以及开关电源维修方法的内容,想了解这方面知道的你们,不妨一起往下看看,相信会对你们有所帮助的。一、开关电源设计的工作原理是什么顾名思义,开关电源就是利用电子开关器件(如晶体管、场效应管、可控硅闸流管等),通过控制电路,使电子开关器件不停地“接通”和“关断”,让电子开关器件对输入电压进行脉冲调制,从而实现DC/AC、DC/DC电压变换,以及输出电压可调和自动稳压。开关电源一般有三种工作模式:频率、脉冲宽度固定模式,频率固定、脉冲宽度可变模式,频率、脉冲宽度可变模式。前一种工作模式多用于DC/AC逆变电源,或DC/DC电压变换;后两种工作模式多用于开关稳压电源。另外,开关电源输出电压也有三种工作方式:直接输出电压方式、平均值输出电压方式、幅值输出电压方式。同样,前一种工作方式多用于DC/AC逆变电源,或DC/DC电压变换;后两种工作方式多用于开关稳压电源。根据开关器件在电路中连接的方式,目前比较广泛使用的开关电源,大体上可分为:串联式开关电源、并联式开关电源、变压器式开关电源等三大类。其中,变压器式开关电源(后面简称变压器开关电源)还可以进一步分成:推挽式、半桥式、全桥式等多种;根据变压器的激励和输出电压的相位,又可以分成:正激式、反激式、单激式和双激式等多种;如果从用途上来分,还可以分成更多种类。二、开关电源维修方法1、修理开关电源时,首先用万用表检测各功率部件是否击穿短路,如电源整流桥堆,开关管,高频大功率整流管;抑制浪涌电流的大功率电阻是否烧断。再检测各输出电压端口电阻是否异常,上述部件如有损坏则需更换。2、第一步完成后,接通电源后还不能正常工作,接着要检测功率因数模块(PFC)和脉宽调制组件(PWM),查阅相关资料,熟悉PFC和PWM模块每个脚的功能及其模块正常工作的必备条件。大家应该都知道开关是我们生活当中所有电子产品所有需要到的部分,对于电子设备来说开关也是尤为重要的,上面小编对开关电源设计的工作原理是什么和开关电源维修方法的内容介绍,相信你们大家看了以后,多多少少也是有所了解的,希望在日后的生活当中,能够帮助到你们。2023-08-26 09:25:281
准谐振反激_基于TEA1751的反激式准谐振开关电源的设计
摘 要:准谐振是一种能够实现零电压开通,减少开关损耗,降低EMI噪声的变换方式。该文介绍了准谐振变换的工作原理,设计并实现了一种采用芯片TEA1751为控制电路的准谐振反激式开关电源。与传统的反激式硬开关变换器相比,减少了开关管的开关损耗,提高了开关电源的效率。 关键词:开关电源;准谐振变换;零电压开关 中图分类号: 文献标识码: 文章编号: 0 引 言 随着电力电子技术的发展,电力电子设备与人们的工作、生活的关系日益密切,而电子设备都离不开可靠的电源,目前,开关电源以小型、轻量和高效率的特点被广泛应用于电子设备,是当今电子信息产业不可缺少的一种电源方式[1]。 由于开关电源频率的提高,开关电源苦工作在硬开关状态,开关管开通时,开关管的电流上升和电压下降同时进行。关断时,电压上升和电流下降也同时进行。电压、电流波形的交叠产生了开关损耗,该损耗随开关频率的提高而急剧增加。为了提高电源的效率,就必须减少开关管的开关损耗。也就是要求开关电源工作在软开关状态。 软开关技术实际上就是利用电容与电感的谐振,以使开关管上的电压或通过开关管的电流按正弦或者准正弦规律变化,在减少开关损耗的同时也可控制浪涌的发生。在软开关技术中,有全谐振、准谐振、多谐振等变换方式[3]。本文引入准谐振变换方式来提高开关电源的效率。 1 反激式准谐振变换基本工作原理 图1反激式准谐振开关电源的原理图 图1所示为反激式准谐振开关电源的原理图,其中:RP 包括变压器初级绕组的电阻以及线路电阻,T为开关变压器,Lm 为初级励磁电感量,Llk为初级绕组漏感量,VT为MOS开关管,VD为整流二极管,Co为滤波电容,电容Cr为缓冲电容,也是谐振电容,包括开关管VT 的输出电容COSS ,变压器的层间电容以及电路中的其他一些杂散电容。 图2反激式准谐振开关电源的工作波形 准谐振变换的工作波形如图2 所示,在准谐振变换中,每个周期可分为4个不同的时间段,各时间段分析如下: (1)t0~t1 时段 开关管导通,输入电压 全部加到初级电感 ( 包括励磁电感Lm和漏感Llk)上,电感电流以斜率 线性增大。此时能量被存储在初级电感中(称磁化),开关管的漏源极电压 = 0,整流二极管VD 截止。电流达到 后开关管被关断。 开关管开通时间 为: (1) (2)t1 ~t2 时段 t1 时,MOS开关管被关断。先是Lm与Llk串联对 充电,由于 两端电压不能突变,开关管的漏源极电压以斜率为 上升。随着 的充电,当 两端电压为 时( 为整流二极管VD的正向导通电压,N为变压器T的初次级匝数比),VD导通,储存在变压器中的能量通过变压器由次级绕组释放给负载,并给电容器Co充电。然后Llk 和Cr发生振荡,由于RP的存在,该振荡为阻尼振荡。若忽略漏极上的其他电容的影响,其峰值电压为: 果 ,尽管VT无法实现零电压开通,但是在t4时刻导通仍然可以最大程度地减小VT的开通损耗。 从以上四个时段的分析可知,谐振元件仅参与某一时段的能量变换,没有全程参与,故称为准谐振变换。 2 电路实现 图3 基于TEA1751的准谐振反激式开关电源的原理图 图3就是基于TEA1751的准谐振反激式开关电源的电路图,主要元器件有:主芯片TEA1751、变压器T2、场效应管S2、谐振电容C7、输出整流管D2、光电耦合器IC2、基准电压源IC1等,其中TEA1751内部有启动电流源、频率控制、输出驱动、过热保护、过压保护、过流保护、过载保护等电路。 AC 90V-264V电压经过整流器BD1整流和C1滤波,经L1、S1、D1、C10的功率因素校正电路后得到直流高压电压,此直流高压经过中心抽头和电阻R13连结至TEA1751的16脚,通过TEA1751内部的高压电流源穿过TEA1751 的1脚向C9充电。当1脚电压上升至22V时,TEA1751由1脚供电。TEA1751的13脚输出开关脉冲,控制开关管S2的开通与关断,高压直流电压通过变压器T2的初级绕组、S2、R11到电源的地端。此时T2通过初级绕组存储能量。利用变压器的同名端作用。这时的次级线圈整流管D2因反向电压而截止。只有当S2关断,初级绕组电流有减小趋势时、此时S2初级绕组存储的能量通过S2的次级绕组、次级整流管D2向电容 Cout充电与负载供电,产生Uo输出电压。输出电压经过R15,R16电压取样以及与IC1基准电源、取样信号放大电路,再经过光电耦合器IC1对TEA1751的3脚设置反馈控制电压,以达到稳定输出电压的目的。过流检测电阻R11 上的电压也经过R10加到TEA1751的10脚。 开关变压器的磁复位检测由辅助绕、R12、TEA1751的4脚组成。辅助绕组是去磁检测绕组,其两端电压波形与开关管S2的漏极电压基本相同。该电压一方面经过D2、C9整流滤波后,给芯片TEA1751的1脚供电,另一方面,电压通过R12直接通连结至TEA1751的 4脚。TEA1751的内部电路监视4脚电压波形,以便在去磁时段未结束前不输出开关脉冲,并能将开关管S2控制在漏源极电压降到谷底时开通。同时TEA1751的4脚还具有过压保护和过功率保护的作用。 3 实验结果 图4 220AC输出功率为90W时MOSFET的漏极电压波形 图4是满载时的开关管的漏极电压波形,开关管在Vds的第一个谷底开通,因而减少了开关管的开通损耗。2023-08-26 09:25:481
开关电源如何设计?
开关电源设计步骤步骤1 确定开关电源的基本参数 ① 交流输入电压最小值umin ② 交流输入电压最大值umax ③ 电网频率Fl 开关频率f ④ 输出电压VO(V):已知 ⑤ 输出功率PO(W):已知 ⑥ 电源效率η:一般取80% ⑦ 损耗分配系数Z:Z表示次级损耗与总损耗的比值,Z=0表示全部损耗发生在初级,Z=1表示发生在次级.一般取Z=0.5 步骤2 根据输出要求,选择反馈电路的类型以及反馈电压VFB 步骤3 根据u,PO值确定输入滤波电容CIN、直流输入电压最小值VImin ① 令整流桥的响应时间tc=3ms ② 根据u,查处CIN值 ③ 得到Vimin 确定CIN,VImin值 u(V) PO(W) 比例系数(μF/W) CIN(μF) VImin(V) 固定输入:100/115 已知 2~3 (2~3)×PO ≥90 通用输入:85~265 已知 2~3 (2~3)×PO ≥90 固定输入:230±35 已知 1 PO ≥240 步骤4 根据u,确定VOR、VB ① 根据u由表查出VOR、VB值 ② 由VB值来选择TVS u(V) 初级感应电压VOR(V) 钳位二极管反向击穿电压VB(V) 固定输入:100/115 60 90 通用输入:85~265 135 200 固定输入:230±35 135 200 步骤5 根据Vimin和VOR来确定最大占空比Dmax ① 设定MOSFET的导通电压VDS(ON) ② 应在u=umin时确定Dmax值,Dmax随u升高而减小 步骤6 确定初级纹波电流IR与初级峰值电流IP的比值KRP,KRP=IR/IP u(V) KRP 最小值(连续模式) 最大值(不连续模式) 固定输入:100/115 0.4 1 通用输入:85~265 0.4 1 固定输入:230±35 0.6 1 步骤7 确定初级波形的参数 ① 输入电流的平均值IAVG ② 初级峰值电流IP ③ 初级脉动电流IR ④ 初级有效值电流IRMS 步骤8 根据电子数据表和所需IP值 选择TOPSwitch芯片 ① 考虑电流热效应会使25℃下定义的极限电流降低10%,所选芯片的极限电流最小值ILIMIT(min)应满足:0.9 ILIMIT(min)≥IP 步骤9和10 计算芯片结温Tj ① 按下式结算: Tj=[I2RMS×RDS(ON)+1/2×CXT×(VImax+VOR) 2 f ]×Rθ+25℃ 式中CXT是漏极电路结点的等效电容,即高频变压器初级绕组分布电容 ② 如果Tj>100℃,应选功率较大的芯片 步骤11 验算IP IP=0.9ILIMIT(min) ① 输入新的KRP且从最小值开始迭代,直到KRP=1 ② 检查IP值是否符合要求 ③ 迭代KRP=1或IP=0.9ILIMIT(min) 步骤12 计算高频变压器初级电感量LP,LP单位为μH 步骤13 选择变压器所使用的磁芯和骨架,查出以下参数: ① 磁芯有效横截面积Sj(cm2),即有效磁通面积. ② 磁芯的有效磁路长度l(cm) ③ 磁芯在不留间隙时与匝数相关的等效电感AL(μH/匝2) ④ 骨架宽带b(mm) 步骤14 为初级层数d和次级绕组匝数Ns赋值 ① 开始时取d=2(在整个迭代中使1≤d≤2) ② 取Ns=1(100V/115V交流输入),或Ns=0.6(220V或宽范围交流输入) ③ Ns=0.6×(VO+VF1) ④ 在使用公式计算时可能需要迭代 步骤15 计算初级绕组匝数Np和反馈绕组匝数NF ① 设定输出整流管正向压降VF1 ② 设定反馈电路整流管正向压降VF2 ③ 计算NP ④ 计算NF 步骤16~步骤22 设定最大磁通密度BM、初级绕组电流密度J、磁芯的气隙宽度δ,进行迭代. ① 设置安全边距M,在230V交流输入或宽范围输入时M=3mm,在110V/115V交流输入时M=1.5mm.使用三重绝缘线时M=0 ② 最大磁通密度BM=0.2~0.3T 若BM>0.3T,需增加磁芯的横截面积或增加初级匝数NP,使BM在0.2~0.3T范围之内.如BM<0.2T,就应选择尺寸较小的磁芯或减小NP值. ③ 磁芯气隙宽度δ≥0.051mm δ=40πSJ(NP2/1000LP-1/1000AL) 要求δ≥0.051mm,若小于此值,需增大磁芯尺寸或增加NP值. ④ 初级绕组的电流密度J=(4~10)A/mm2 若J>10A/mm2,应选较粗的导线并配以较大尺寸的磁芯和骨架,使J<10A/mm2.若J<4A/mm2,宜选较细的导线和较小的磁芯骨架,使J>4A/mm2;也可适当增加NP的匝数. ⑤ 确定初级绕组最小直径(裸线)DPm(mm) ⑥ 确定初级绕组最大外径(带绝缘层)DPM(mm) ⑦ 根据初级层数d、骨架宽带b和安全边距M计算有效骨架宽带be(mm) be=d(b-2M) 然后计算初级导线外径(带绝缘层)DPM:DPM=be/NP 步骤23 确定次级参数ISP、ISRMS、IRI、DSM、DSm ① 次级峰值电流ISP(A) ISP=IP×(NP/NS) ② 次级有效值电流ISRMS(A) ③ 输出滤波电容上的纹波电流IRI(A) ⑤ 次级导线最小直径(裸线)DSm(mm) ⑥ 次级导线最大外径(带绝缘层)DSM(mm) 步骤24 确定V(BR)S、V(BR)FB ① 次级整流管最大反向峰值电压V(BR)S V(BR)S=VO+VImax×NS/NP ② 反馈级整流管最大反向峰值电压V(BR)FB V(BR)FB=VFB+ VImax×NF/NP 步骤25 选择钳位二极管和阻塞二极管 步骤26 选择输出整流管 步骤27 利用步骤23得到的IRI,选择输出滤波电容COUT ① 滤波电容COUT在105℃、100KHZ时的纹波电流应≥IRI ② 要选择等效串连电阻r0很低的电解电容 ③ 为减少大电流输出时的纹波电流IRI,可将几只滤波电容并联使用,以降低电容的r0值和等效电感L0 ④ COUT的容量与最大输出电流IOM有关 步骤28~29 当输出端的纹波电压超过规定值时,应再增加一级LC滤波器 ① 滤波电感L=2.2~4.7μH.当IOM<1A时可采用非晶合金磁性材料制成的磁珠;大电流时应选用磁环绕制成的扼流圈. ② 为减小L上的压降,宜选较大的滤波电感或增大线径.通常L=3.3μH ③ 滤波电容C取120μF /35V,要求r0很小 步骤30 选择反馈电路中的整流管 步骤31 选择反馈滤波电容 反馈滤波电容应取0.1μF /50V陶瓷电容器 步骤32 选择控制端电容及串连电阻 控制端电容一般取47μF /10V,采用普通电解电容即可.与之相串连的电阻可选6.2Ω、1/4W,在不连续模式下可省掉此电阻. 步骤33选定反馈电路 步骤34选择输入整流桥 ① 整流桥的反向击穿电压VBR≥1.25√2 umax ② 设输入有效值电流为IRMS,整流桥额定有效值电流为IBR,使IBR≥2IRMS.计算IRMS公式如下: cosθ为开关电源功率因数,一般为0.5~0.7,可取cosθ=0.5 步骤35 设计完毕 在所有的相关参数中,只有3个参数需要在设计过程中进行检查并核对是否在允许的范围之内.它们是最大磁通密度BM(要求BM=0.2T~0.3T)、磁芯的气隙宽度δ(要求δ≥0.051mm)、初级电流密度J(规定J=4~10A/mm2).这3个参数在设计的每一步都要检查,确保其在允许的范围之内.2023-08-26 09:26:261
开关电源的设计与工作原理
你是出版商吗?2023-08-26 09:26:364
如何设计开关电源?
先是收集整理资料吧2023-08-26 09:27:462
开关电源设计入门与实例解析的介绍
《开关电源设计入门与实例解析》是2009年10月中国电力出版社出版的图书,作者是沙占友 王彦朋 《开关电源设计入门与实例解析》全面、系统地阐述了开关电源的设计入门知识,并对一些典型设计实例做以解析。《开关电源设计入门与实例解析》遵循先易后难、化整为零、突出重点和难点的原则,在介绍开关电源基本原理与构成的基础上,首先将开关电源划分成若干个基本单元电路,依次阐述开关电源一次侧外围电路的设计、高频变压器的设计、二次侧输出电路及反馈电路的设计,再介绍整机电路设计,最后以图表的形式简明扼要地分析了28种新型开关电源的设计实例。所述内容可帮助读者快速、全面、系统地掌握开关电源的设计与制作知识。《开关电源设计入门与实例解析》融实用性、科学性于一体,内容由浅人深,循序渐进,通俗易懂,图文并茂,是一本开关电源的入门指南,适合开关电源行业中的工程技术人员和初学者阅读。2023-08-26 09:27:571
开关电源的设计与工作原理
原发布者:雨水的sky开关电源一.开关电源的工作原理(以LQ-1600K3电源为例)+5V+35Vcpu20AC输入sw1.滤波电路交流输入经滤波电路整形进入全桥整流。滤波电路减小了外部噪声和打印机内部所产生的噪声。滤波器中使用的线圈和电容的作用是抑制交流电中的毛刺脉冲,使噪声干扰降低到最小从而得到一个较平滑的正弦波。C3、C4电容接于地是为了防止电源中窜入高脉冲损坏电路。经全桥整流和电容滤波形成300多伏的准直流电压。2.开关电路开关电路使用环形阻塞转换器式交流输入开关电源电路。具有元件少,变压器小的特点,场效应管Q1既是开关管又是振荡管,振荡周期由电阻R11和C13的充放电时间常数所决定。电路的工作过程是导通饱和→截止→导通饱和,周而复始地进行下去。其工作过程如下:a.导通饱和阶段电源接通,交流220V经过滤波、整流、平滑输出直流电压300V,由启动电阻R10、R31接至振荡管Q1的栅极上,产生栅压Vgs,在Q1的漏极上产生漏极电流Id,从小到大。在变压器T1上线圈T15—12内产生一个力图阻止Id增大的自感电2023-08-26 09:28:311
反激式开关电源变压器怎么设计
开关电源变压器的计算(隔离型):1、根据电源设计要求,计算出开关电源的功率。2、根据这个功率,开关电源的工作频率,选择开关电源变压器的磁芯,从而确定ae、le等磁芯参数;3、根据设计开关电源时确定的开关电源变压器的初级电感值lp、ae、磁芯的bmax、初级峰值电流ippk,计算出初级圈数np_min=(lp*ippk)/(b_max×ae)4、根据你要求的输出电压。计算次级输出圈数,反馈线圈圈数。5、根据电流,选择线径;6、校核开关电源变压器设计后的窗口绕线,是否合乎要求。这里只是说明了一些基本计算,实际上根据开关电源工作模式,是不同的。这里只是一般ac-dc离线回扫的基本计算,不过这里省略了开关电源其他计算。具体可参阅《开关电源设计手册》。2023-08-26 09:28:472
开关电源设计的作者简介
普利斯曼(Abraham I. Pressman),是美国知名的电源顾问和专家,曾经做过军事雷达军官和四十多年的模数设计工程师。在过去的半个多世纪里,他为电子领域里的数个“第一”作出了重要贡献:第一个用粒子加速器获得10亿伏特电压的能量、第一台用于计算机工业的快速打印机、第一个在宇宙飞船上拍摄月球表面照片的技术,最早介绍用晶体管设计计算机逻辑电路的教科书,以及开关电源的教科书。Pressman先生是《开关电源设计》前两版的作者。比得斯(Keith. Billings),是一名注册电子工程师,电源领域的专家,《Switchmode Power Supply Hand-book》(由McGraw-Hill出版)的作者。他早期当过机械仪器制造商,为皇家空军的自动驾驶和电子指南设备等导航仪器做过技术支持;在政府的军事部门工作过,并专门从事包括UK3卫星的军用特殊仪器的设计。在过去的44年时间里,他专门从事开关电源设计和制造业。75岁时,仍然活跃于电源工业界,并在加拿大圭尔夫市成立了自己的咨询公司——DKB电源有限公司。在此书中,Keith献出了Abe Pressman关于电源设计的培训课程,以及自己关于磁学的培训课程——变压器和电感的设计。Keith曾是一名狂热的帆船爱好者,但现在的爱好是玩滑翔机,在1993年时已建造了一艘高性能的滑翔机,1994年时曾在内华达明登滑翔至22,000英尺的海拔高度。莫瑞(Taylor Morey),是加拿大安大略省基臣纳尔市的康耐斯托加学院电子学科的教授,与人合著过电子器件教科书,曾在滑铁卢市的威尔福德劳瑞尔大学任教,在拉巴斯天主教大学教电子工程专业课。他作为自由电源工程师和顾问,以及在乔治敦的加拿大Varian的开关电源开发部、圭尔夫市的Hammond制造业和GFC电源工作时,多次与Keith Billings合作。在其职业生涯早期,曾在加拿大IBM大型计算机研究部和多伦多全球电视工作室工作。2023-08-26 09:28:551
开关电源设计的注意事项有哪些
对于我多年pcb设计经验来说:有1.输入输出回路最小 2.满足载流3.滤波4.地处理 5.反馈信号处理6.参考芯片资料设计 这6大方面。具体情况可以结合做项目时具体分析~2023-08-26 09:29:194
开关电源设计的作品目录
第1章基本拓扑1.1引言——线性调整器和Buck、Boost及反相开关型调整器1.2线性调整器——耗能型调整器1.2.1基本工作原理1.2.2线性调整器的缺点1.2.3串接晶体管的功率损耗1.2.4线性调整器的效率与输出电压的关系1.2.5串接PNP型晶体管的低功耗线性调整器1.3开关型调整器拓扑1.3.1Buck开关型调整器1.3.2Buck调整器的主要电流波形1.3.3Buck调整器的效率1.3.4Buck调整器的效率(考虑交流开关损耗)1.3.5理想开关频率的选择1.3.6设计例子1.3.7输出电容1.3.8有直流隔离调整输出的Buck调整器的电压调节1.4Boost开关调整器拓扑1.4.1基本原理1.4.2Boost调整器的不连续工作模式1.4.3Boost调整器的连续工作模式1.4.4不连续工作模式的Boost调整器的设计1.4.5Boost调整器与反激变换器的关系1.5反极性Boost调整器1.5.1基本工作原理1.5.2反极性调整器设计关系参考文献第2章推挽和正激变换器拓扑2.1引言2.2推挽拓扑2.2.1基本原理(主/辅输出结构)2.2.2辅输出的输入—负载调整率2.2.3辅输出电压偏差2.2.4主输出电感的最小电流限制2.2.5推挽拓扑中的磁通不平衡(偏磁饱和现象)2.2.6磁通不平衡的表现2.2.7磁通不平衡的测试2.2.8磁通不平衡的解决方法2.2.9功率变压器设计2.2.10初/次级绕组的峰值电流及有效值电流2.2.11开关管的电压应力及漏感尖峰2.2.12功率开关管损耗2.2.13推挽拓扑输出功率及输入电压的限制2.2.14输出滤波器的设计2.3正激变换器拓扑2.3.1基本工作原理2.3.2输出/输入电压与导通时间和匝数比的设计关系2.3.3辅输出电压2.3.4次级负载、续流二极管及电感的电流2.3.5初级电流、输出功率及输入电压之间的关系2.3.6功率开关管最大关断电压应力2.3.7实际输入电压和输出功率限制2.3.8功率和复位绕组匝数不相等的正激变换器2.3.9正激变换器电磁理论2.3.10功率变压器的设计2.3.11输出滤波器的设计2.4双端正激变换器拓扑2.4.1基本原理2.4.2设计原则及变压器的设计2.5交错正激变换器拓扑2.5.1基本工作原理、优缺点和输出功率限制2.5.2变压器的设计2.5.3输出滤波器的设计参考文献第3章半桥和全桥变换器拓扑3.1引言3.2半桥变换器拓扑3.2.1工作原理3.2.2半桥变换器磁设计3.2.3输出滤波器的设计3.2.4防止磁通不平衡的隔直电容的选择3.2.5半桥变换器的漏感问题3.2.6半桥变换器与双端正激变换器的比较3.2.7半桥变换器实际输出功率的限制3.3全桥变换器拓扑3.3.1基本工作原理3.3.2全桥变换器磁设计3.3.3输出滤波器的计算3.3.4变压器初级隔直电容的选择第4章反激变换器4.1引言4.2反激变换器基本工作原理4.3反激变换器工作模式4.4断续工作模式4.4.1输入电压、输出电压及导通时间与输出负载的关系4.4.2断续模式向连续模式的过渡4.4.3反激变换器连续模式的基本工作原理4.5设计原则和设计步骤4.5.1步骤1:确定初/次级匝数比4.5.2步骤2:保证磁心不饱和且电路始终工作于DCM模式4.5.3步骤3:根据最小输出电阻及直流输入电压调整初级电感4.5.4步骤4:计算开关管的最大电压应力和峰值电流4.5.5步骤5:计算初级电流有效值和导线尺寸4.5.6步骤6:次级电流有效值和导线尺寸4.6断续模式下的反激变换器的设计实例4.6.1反激拓扑的电磁原理4.6.2铁氧体磁心加气隙防止饱和4.6.3采用MPP磁心防止饱和4.6.4反激变换器的缺点4.7120V/220V交流输入反激变换器4.8连续模式反激变换器的设计原则4.8.1输出电压和导通时间的关系4.8.2输入、输出电流与功率的关系4.8.3最小直流输入时连续模式下的电流斜坡幅值4.8.4断续与连续模式反激变换器的设计实例4.9交错反激变换器4.9.1交错反激变换器次级电流的叠加4.10双端(两开关管)断续模式反激变换器4.10.1应用场合4.10.2基本工作原理4.10.3双端反激变换器的漏感效应参考文献第5章电流模式和电流馈电拓扑5.1简介5.1.1电流模式控制5.1.2电流馈电拓扑5.2电流模式控制5.2.1电流模式控制的优点5.3电流模式和电压模式控制电路的比较5.3.1电压模式控制电路5.3.2电流模式控制电路5.4电流模式优点详解5.4.1输入网压的调整5.4.2防止偏磁5.4.3在小信号分析中可省去输出电感简化反馈环设计5.4.4负载电流调整原理5.5电流模式的缺点和存在的问题5.5.1恒定峰值电流与平均输出电流的比例问题5.5.2对输出电感电流扰动的响应5.5.3电流模式的斜率补偿5.5.4用正斜率电压的斜率补偿5.5.5斜率补偿的实现5.6电压馈电和电流馈电拓扑的特性比较5.6.1引言及定义5.6.2电压馈电PWM全桥变换器的缺点5.6.3Buck电压馈电全桥拓扑基本工作原理5.6.4Buck电压馈电全桥拓扑的优点5.6.5Buck电压馈电PWM全桥电路的缺点5.6.6Buck电流馈电全桥拓扑——基本工作原理5.6.7反激电流馈电推挽拓扑(Weinberg电路)参考文献第6章其他拓扑6.1SCR谐振拓扑概述6.2SCR和ASCR的基本工作原理6.3利用谐振正弦阳极电流关断SCR的单端谐振逆变器拓扑6.4SCR谐振桥式拓扑概述6.4.1串联负载SCR半桥谐振变换器的基本工作原理6.4.2串联负载SCR半桥谐振变换器的设计计算6.4.3串联负载SCR半桥谐振变换器的设计实例6.4.4并联负载SCR半桥谐振变换器6.4.5单端SCR谐振变换器拓扑的设计6.5Cuk变换器拓扑概述6.5.1Cuk变换器的基本工作原理6.5.2输出/输入电压比与开关管Q1导通时间的关系6.5.3L1和L2的电流变化率6.5.4消除输入电流纹波的措施6.5.5Cuk变换器的隔离输出6.6小功率辅助电源拓扑概述6.6.1辅助电源的接地问题6.6.2可供选择的辅助电源6.6.3辅助电源的典型电路6.6.4Royer振荡器辅助电源的基本工作原理6.6.5作为辅助电源的简单反激变换器6.6.6作为辅助电源的Buck调节器(输出带直流隔离)参考文献第7章变压器及磁性元件设计7.1引言7.2变压器磁心材料与几何结构、峰值磁通密度的选择7.2.1几种常用铁氧体材料的磁心损耗与频率和磁通密度的关系7.2.2铁氧体磁心的几何尺寸7.2.3峰值磁通密度的选择7.3磁心最大输出功率、峰值磁通密度、磁心和骨架面积及线圈电流密度的选择7.3.1变换器拓扑输出功率公式的推导7.3.2推挽变换器输出功率公式的推导7.3.3半桥拓扑输出功率公式的推导7.3.4全桥拓扑输出功率公式的推导7.3.5以查表的方式确定磁心和工作频率7.4变压器温升的计算7.5变压器中的铜损7.5.1引言7.5.2集肤效应7.5.3集肤效应——定量分析7.5.4不同规格的线径在不同频率下的交/直流阻抗比7.5.5矩形波电流的集肤效应[14 ]7.5.6邻近效应7.6引言:利用面积乘积(AP)法进行电感及磁性元件设计7.6.1AP法的优点7.6.2电感器设计7.6.3信号级小功率电感7.6.4输入滤波电感7.6.5设计举例:60Hz共模输入滤波电感7.6.6差模输入滤波电感7.7磁学:扼流线圈简介——直流偏置电流很大的电感7.7.1公式、单位和图表7.7.2有磁化直流偏置的磁化曲线特征7.7.3磁场强度Hdc7.7.4增加扼流圈电感或者额定直流偏置量的方法7.7.5磁通密度ΔB7.7.6气隙的作用7.7.7温升7.8磁设计——扼流圈磁心材料简介7.8.1适用于低交流应力场合的扼流圈材料7.8.2适用于高交流应力场合的扼流圈材料7.8.3适用于中等范围的扼流圈材料7.8.4磁心材料饱和特性7.8.5磁心材料损耗特性7.8.6材料饱和特性7.8.7材料磁导率参数7.8.8材料成本7.8.9确定最佳的磁心尺寸和形状7.8.10磁心材料选择总结7.9磁学:扼流圈设计例子7.9.1扼流圈设计例子:加了气隙的铁氧体磁心7.9.2步骤一:确定20%纹波电流需要的电感量7.9.3步骤二:确定面积乘积(AP)7.9.4步骤三:计算最小匝数7.9.5步骤四:计算磁心气隙7.9.6步骤五:确定最佳线径7.9.7步骤六:计算最佳线径7.9.8步骤七:计算绕组电阻7.9.9步骤八:确定功率损耗7.9.10步骤九:预测温升——面积乘积法7.9.11步骤十:核查磁心损耗7.10磁学:用粉芯磁心材料设计扼流圈——简介7.10.1影响铁粉芯磁心材料选择的因素7.10.2粉芯材料的饱和特性7.10.3粉芯材料的损耗特性7.10.4铜耗——低交流应力时限制扼流圈设计的因素7.10.5磁心损耗——高交流应力时限制扼流圈设计的因素7.10.6中等交流应力时的扼流圈设计7.10.7磁心材料饱和特性7.10.8磁心的几何结构7.10.9材料成本7.11扼流圈设计例子:用环形Kool Mμ材料设计受铜耗限制的扼流圈7.11.1引言7.11.2根据所储存能量和面积乘积法选择磁心尺寸7.11.3受铜耗限制的扼流圈设计例子7.12用各种E形粉芯设计扼流圈的例子7.12.1引言7.12.2第一个例子:用#40E形铁粉芯材料设计扼流圈7.12.3第二个例子:用#8E形铁粉芯磁心设计扼流圈7.12.4第三个例子:用#60 E形Kool Mμ磁心设计扼流圈7.13变感扼流圈设计例子:用E形Kool Mμ磁芯设计受铜耗限制的扼流圈7.13.1变感扼流圈7.13.2变感扼流圈设计例子参考文献第8章双极型大功率晶体管的基极驱动电路8.1引言8.2双极型晶体管的理想基极驱动电路的主要目标8.2.1导通期间足够大的电流8.2.2导通瞬间基极过驱动峰值输入电流Ib18.2.3关断瞬间反向基极电流尖峰Ib28.2.4关断瞬间基射极间的-1~-5V反向电压尖峰8.2.5贝克(Baker)钳位电路(能同时满足高、低β值的晶体管工作要求的电路)8.2.6对驱动效率的改善8.3变压器耦合的贝克(Baker)钳位电路8.3.1Baker钳位的工作原理8.3.2使用变压器耦合的Baker钳位电路8.3.3结合集成变压器的Baker钳位8.3.4达林顿管(Darlington)内部的Baker钳位电路8.3.5比例基极驱动8.3.6其他类型的基极驱动电路参考文献第9章MOSFET和IGBT及其驱动电路9.1MOSFET概述9.1.1IGBT概述9.1.2电源工业的变化9.1.3对新电路设计的影响9.2MOSFET管的基本工作原理9.2.1MOSFET管的输出特性(Id-Vds)9.2.2MOSFET管的通态阻抗rds(on)9.2.3MOSFET管的输入阻抗米勒效应和栅极电流9.2.4计算栅极电压的上升和下降时间已获得理想的漏极电流上升和下降时间9.2.5MOSFET管栅极驱动电路9.2.6MOSFET管rds温度特性和安全工作区9.2.7MOSFET管栅极阈值电压及其温度特性9.2.8MOSFET管开关速度及其温度特性9.2.9MOSFET管的额定电流9.2.10MOSFET管并联工作9.2.11推挽拓扑中的MOSFET管9.2.12MOSFET管的最大栅极电压9.2.13MOSFET管源漏极间的体二极管9.3绝缘栅双极型晶体管(IGBT)概述9.3.1选择合适的IGBT9.3.2IGBT构造概述9.3.3IGBT工作特性9.3.4IGBT并联使用9.3.5技术参数和最大额定值9.3.6静态电学特性9.3.7动态特性9.3.8温度和机械特性参考文献第10章磁放大器后级调节器10.1引言10.2线性调整器和Buck后级调整器10.3磁放大器概述10.3.1用作快速开关的方形磁滞回线磁心10.3.2磁放大器中的关断和导通时间10.3.3磁放大器磁心复位及稳压10.3.4利用磁放大器关断辅输出10.3.5方形磁滞回线磁心特性和几种常用磁心10.3.6磁心损耗和温升的计算10.3.7设计实例——磁放大器后级整流10.3.8磁放大器的增益10.3.9推挽电路的磁放大器输出10.4磁放大器脉宽调制器和误差放大器10.4.1磁放大器脉宽调制及误差放大器电路参考文献第11章开关损耗分析与负载线整形缓冲电路设计11.1引言11.2无缓冲电路的晶体管的关断损耗11.3RCD关断缓冲电路11.4RCD缓冲电路中电容的选择11.5设计范例——RCD缓冲电路11.5.1接电源正极的RCD缓冲电路11.6无损缓冲电路11.7负载线整形(减少尖峰电压以防止晶体管二次击穿的缓冲器)11.8变压器无损缓冲电路参考文献第12章反馈环路的稳定12.1引言12.2系统振荡原理12.2.1电路稳定的增益准则12.2.2电路稳定的增益斜率准则12.2.3输出LC滤波器的增益特性(输出电容含/不含ESR)12.2.4脉宽调制器的增益12.2.5LC输出滤波器加调制器和采样网络的总增益12.3误差放大器幅频特性曲线的设计12.4误差放大器的传递函数、极点和零点12.5零点、极点频率引起的增益斜率变化规则12.6只含单零点和单极点的误差放大器传递函数的推导12.7根据2型误差放大器的零点、极点位置计算相移12.8考虑ESR时LC滤波器的相移12.9设计实例——含有2型误差放大器的正激变换器反馈环路的稳定性12.103型误差放大器的应用及其传递函数12.113型误差放大器零点、极点位置引起的相位滞后12.123型误差放大器的原理图、传递函数及零点、极点位置12.13设计实例——通过3型误差放大器反馈环路稳定正激变换器12.143型误差放大器元件的选择12.15反馈系统的条件稳定12.16不连续模式下反激变换器的稳定12.16.1从误差放大器端到输出电压节点的直流增益12.16.2不连续模式下反激变换器的误差放大器输出端到输出电压节点的传递函数12.17不连续模式下反激变换器误差放大器的传递函数12.18设计实例——不连续模式下反激变换器的稳定12.19跨导误差放大器参考文献第13章谐振变换器13.1引言13.2谐振变换器13.3谐振正激变换器13.3.1某谐振正激变换器的实测波形13.4谐振变换器的工作模式13.4.1不连续模式和连续模式;过谐振模式和欠谐振模式13.5连续模式下的谐振半桥变换器13.5.1并联谐振变换器(PRC)和串联谐振变换器(SRC)13.5.2连续模式下串联负载和并联负载谐振半桥变换器的交流等效电路和增益曲线13.5.3连续模式(CCM)下串联负载谐振半桥变换器的调节13.5.4连续模式下并联负载谐振半桥变换器的调节13.5.5连续模式下串联/并联谐振变换器13.5.6连续模式下零电压开关准谐振变换器13.6谐振电源小结参考文献第14章开关电源的典型波形14.1引言14.2正激变换器波形14.2.180%额定负载下测得的Vds和Id的波形14.2.240%额定负载下的Vdc和Ids的波形14.2.3导通/关断过程中漏源极间电压和漏极电流的重叠14.2.4漏极电流、漏源极间的电压和栅源极间的电压波形的相位关系14.2.5变压器的次级电压、输出电感电流的上升和下降时间与功率晶体管漏源电压波形14.2.6图14.1中的正激变换器的PWM驱动芯片(UC3525A)的关键点波形14.3推挽拓扑波形概述14.3.1最大、额定及最小电源电压下,负载电流最大时变压器中心抽头处的电流和开关管漏源极间的电压14.3.2两开关管Vds的波形及死区期间磁心的磁通密度14.3.3栅源极间电压、漏源极间电压和漏极电流的波形14.3.4漏极处的电流探头与变压器中心抽头处的电流探头各自测量得到的漏极电流波形的比较14.3.5输出纹波电压和整流器阴极电压14.3.6开关管导通时整流器阴极电压的振荡现象14.3.7开关管关断时下降的漏极电流和上升的漏源极间电压重叠产生的交流开关损耗14.3.820%最大输出功率下漏源极间电压和在变压器中心抽头处测得的漏极电流的波形14.3.920%最大输出功率下的漏极电流和漏极电压的波形14.3.1020%最大输出功率下两开关管漏源极间电压的波形14.3.11输出电感电流和整流器阴极电压的波形14.3.12输出电流大于最小输出电流时输出整流器阴极电压的波形14.3.13栅源极间电压和漏极电流波形的相位关系14.3.14整流二极管(变压器次级)的电流波形14.3.15由于励磁电流过大或直流输出电流较小造成的每半周期两次“导通”的现象14.3.16功率高于额定最大输出功率15%时的漏极电流和漏极电压的波形14.3.17开关管死区期间的漏极电压振荡14.4反激拓扑波形14.4.1引言14.4.290%满载情况下,输入电压为其最小值、最大值及额定值时漏极电流和漏源极间电压的波形14.4.3输出整流器输入端的电压和电流波形14.4.4开关管关断瞬间缓冲器电容的电流波形参考文献第15章功率因数及功率因数校正15.1功率因数15.2开关电源的功率因数校正15.3校正功率因数的基本电路15.3.1用于功率因数校正的连续和不连续工作模式Boost电路对比15.3.2连续工作模式下Boost变换器对输入网压变化的调整15.3.3连续工作模式下Boost变换器对负载电流变化的调整15.4用于功率因数校正的集成电路芯片15.4.1功率因数校正芯片Unitrode UC385415.4.2用UC3854实现输入电网电流的正弦化15.4.3使用UC3854保持输出电压恒定15.4.4采用UC3854芯片控制电源的输出功率15.4.5采用UC3854芯片的Boost电路开关频率的选择15.4.6Boost输出电感L1的选择15.4.7Boost输出电容的选择15.4.8UC3854的峰值电流限制15.4.9设计稳定的UC3854反馈环15.5Motorola MC34261功率因数校正芯片15.5.1Motorola MC34261的详细说明(图15.11)15.5.2MC34261的内部逻辑及结构(图15.11和图15.12)15.5.3开关频率和L1电感量的计算15.5.4MC34261电流检测电阻(R9)和乘法器输入电阻网络(R3和R7)的选择参考文献第16章电子镇流器——应用于荧光灯的高频电源16.1引言:电磁镇流器16.2荧光灯的物理特性和类型16.3电弧特性16.3.1在直流电压下的电弧特性16.3.2交流驱动的荧光灯16.3.3带电子镇流器荧光灯的伏安特性16.4电子镇流器电路16.5DC/AC逆变器的一般特性16.6DC/AC逆变器拓扑16.6.1电流馈电式推挽拓扑16.6.2电流馈电式推挽拓扑的电压和电流16.6.3电流馈电拓扑中的“电流馈电”电感的幅值16.6.4电流馈电电感中具体磁心的选择16.6.5电流馈电电感线圈的设计16.6.6电流馈电拓扑中的铁氧体磁心变压器16.6.7电流馈电拓扑的环形磁心变压器16.7电压馈电推挽拓扑16.8电流馈电并联谐振半桥拓扑16.9电压馈电串联谐振半桥拓扑16.10电子镇流器的封装参考文献第17章用于笔记本电脑和便携式电子设备的低输入电压变换器17.1引言17.2低输入电压芯片变换器供应商17.3凌特(Linear Technology)公司的Boost和Buck变换器17.3.1凌特LT1170 Boost变换器17.3.2LT1170 Boost变换器的主要波形17.3.3IC变换器的热效应17.3.4LT1170 Boost变换器的其他应用17.3.5LTC其他类型高功率Boost变换器17.3.6Boost变换器的元件选择17.3.7凌特Buck变换器系列17.3.8LT1074 Buck变换器的其他应用17.3.9LTC高效率、大功率Buck变换器17.3.10凌特大功率Buck变换器小结17.3.11凌特低功率变换器17.3.12反馈环的稳定性17.4Maxim公司的变换器芯片17.5由芯片产品构成的分布式电源系统2023-08-26 09:29:261
开关电源设计中的元器件如何选型?
【导读】开关电源属有稳压功能的DC/DC变换,其中间环节仍然要通过脉冲状态作为转换媒介。在开关电源中,电压、电流波形均为突变的脉冲状态,元器件所承受电压或电流除加在元器件上的供电电压以外,还有电路中电感成分引起的感应电压、电容器的充电电流等,使得元器件的选择变得复杂化。 实际上,开关电源属有稳压功能的AC/DC或DC/DC变换器,即使所谓DC/DC变换,其中间环节仍然要通过脉冲状态作为转换媒介。实际过程是:DC先逆变成脉冲状态的AC,再由脉冲整流、滤波成为直流电压。在此过程中,整流、滤波元器件要求也与工频整流电路大有区别。工频正弦波交流电源最大值、平均值和有效值都按正弦函数有固定的比例关系,可以对元器件的额定参数进行十分准确的计算。 但是,脉冲波、电压、电流数值的关系不是一成不变的,而是随脉冲波形和负载性质而有很大的变化。 即使采用积分法计算脉冲波形的平均值,要求脉冲波形有一定的规律,而波形幅度与时间关系的不稳定性使这种计算往往难以准确。尤其是脉冲波形的定量测量,也非一般简单仪表所能准确测量的,除了脉冲示波器以外,还没有更简单的方式,例如:开关电源开关管的反向电压值。至于某些情况下要求测出脉冲波的有效值就更困难了。例如:用行逆程脉冲向CRT灯丝供电,要求6.3V的有效值,其准确测量,除用热电偶传感器组成的磁电式仪表或高频率电动式仪表以外,似乎还没有其他的方式。 也就是说,工作在脉冲电路中的元器件欲通过实测电压、电流参数选择其性能是不可能的。至于理论计算,也只能达到近似估计的程度,具体参数选择是在计算结果的基础上宽打窄用。最明显的例子是:单端开关电路,从理论上计算,其开关管反压应为输入电压最大值的两倍。而实际应用中,加在开关管集电极的脉冲波形受储能电感的集总参数、分布参数和电源负载性质的影响,开关管承受反压值将超出理论计算值范围。 因为电感线圈的感应电势不仅与电流变化成正比的函数,而且与产生电流变化的时间成反比。另外,电感线圈的工艺上几乎难以人为控制的分布参数,也使感应电势大幅度超出计算值。因此,在脉冲状态下,不论无源元件还是有源器件,其性能选择不同于普通模拟电路。2023-08-26 09:30:381
老工程师总结的开关电源设计心得
首先从开关电源的设计及生产工艺开始描述吧,先说说印制板的设计。开关电源工作在高频率,高脉冲状态,属于模拟电路中的一个比较特殊种类。布板时须遵循高频电路布线原则。 1、布局: 脉冲电压连线尽可能短,其中输入开关管到变压器连线,输出变压器到整流管连接线。脉冲电流环路尽可能小如输入滤波电容正到变压器到开关管返回电容负。输出部分变压器出端到整流管到输出电感到输出电容返回变压器电路中X电容要尽量接 近开关电源输入端,输入线应避免与其他电路平行,应避开。Y电容应放置在机壳接地端子或FG连接端。共摸电感应与变压器保持一定距离,以避免磁偶合。如不好处理可在共摸电感与变压器间加一屏蔽,以上几项对开关电 源的EMC性能影响较大。 输出电容一般可采用两只一只靠近整流管另一只应靠近输出端子,可影响电源输出纹波指标,两只小容量电容并联效果应优于用一只大容量电容。发热器件要和电解电容保持一定距离,以延长整机寿命,电解电容是开关电源寿命的瓶劲,如变压器、功率管、大功率电阻要和电解保持距离,电解之间也须留出散热空间,条件允许 可将其放置在进风口。 控制部分要注意:高阻抗弱信号电路连线要尽量短如取样反馈环路,在处理时要尽量避免其受干扰、电流取样信号电路,特别是电流控制型电路,处理不好易出现一些想不到的意外,其中有一些技巧,现以3843电路举例见图(1)图一效果要好于图二,图二在满载时用示波器观测电流波形上明显叠加尖刺,由于干扰限流点比设计值偏低,图一则没有这种现象、还有开关管驱动信号电路,开关管驱动电阻要靠近开关管,可提高开关管工作可靠性,这和功率MOSFET高直流阻抗电压驱动特性有关。 下面谈一谈印制板布线的一些原则。 线间距: 随着印制线路板制造工艺的不断完善和提高,一般加工厂制造出线间距等于甚至小于0.1mm已经不存在什么问题,完全能够满足大多数应用场合。考虑到开关电源所采用的元器件及生产工艺,一般双面板最小线间距设为0.3mm,单面板最小线间距设为0.5mm,焊盘与焊盘、焊盘与过孔或过孔与过孔,最小 间距设为0.5mm,可避免在焊接操作过程中出现“桥接”现象。,这样大多数制板厂都能够很轻松满足生产要求,并可以把成品率控制得非常高,亦可实现合理的布线密度及有一个较经济的成本。 最小线间距只适合信号控制电路和电压低于63V的低压电路,当线间电压大于该值时一般可按照500V/1mm经验值取线间距。 鉴于有一些相关标准对线间距有较明确的规定,则要严格按照标准执行,如交流入口端至熔断器端连线。某些电源对体积要求很高,如模块电源。一般变压器输入侧线间距为1mm实践证明是可行的。对交流输入,(隔离)直流输出的电源产品,比较严格的规定为安全间距要大于等于6mm,当然这由相关的标准及执行方法 确定。一般安全间距可由反馈光耦两侧距离作为参考,原则大于等于这个距离。也可在光耦下面印制板上开槽,使爬电距离加大以满足绝缘要求。一般开关电源交流输入侧走线或板上元件距非绝缘的外壳、散热器间距要大于5mm,输出侧走线或器件距外壳或散热器间距要大于2mm,或严格按照安全规范执行。 常用方法: 上文提到的线路板开槽的方法适用于一些间距不够的场合,顺便提一下,该法也常用来作为保护放电间隙,常见于电视机显象管尾板和电源交流输入处。该法在模块电源中得到了广泛的应用,在灌封的条件下可获得很好的效果。 方法二: 垫绝缘纸,可采用青壳纸、聚脂膜、聚四氟乙烯定向膜等绝缘材料。一般通用电源用青壳纸或聚脂膜垫在线路板于金属机壳间,这种材料有机械强度高,有有一定抗潮湿的能力。聚四氟乙烯定向膜由于具有耐高温的特性在模块电源中得到广泛的应用。在元件和周围导体间也可垫绝缘薄膜来提高绝缘抗电性能。 注意:某些器件绝缘被覆套不能用来作为绝缘介质而减小安全间距,如电解电容的外皮,在高温条件下,该外皮有可能受热收缩。大电解防爆槽前端要留出空间,以确保电解电容在非常情况时能无阻碍地泻压. 谈一谈印制板铜皮走线的一些事项: 走线电流密度: 现在多数电子线路采用绝缘板缚铜构成。常用线路板铜皮厚度为35μm,走线可按照1A/mm经验值取电流密度值,具体计算可参见教科书。为保证走线机械强度原则线宽应大于或等于0.3mm(其他非电源线路板可能最小线宽会小一些)。铜皮厚度为70μm线路板也常见于开关电源,那么电流密度可更高些。 补充一点,现常用线路板设计工具软件一般都有设计规范项,如线宽、线间距,旱盘过孔尺寸等参数都可以进行设定。在设计线路板时,设计软件可自动按照规范执行,可节省许多时间,减少部分工作量,降低出错率。 一般对可靠性要求比较高的线路或布线线密度大可采用双面板。其特点是成本适中,可靠性高,能满足大多数应用场合。 模块电源行列也有部分产品采用多层板,主要便于集成变压器电感等功率器件,优化接线、功率管散热等。具有工艺美观一致性好,变压器散热好的优点,但其缺点是成本较高,灵活性较差,仅适合于工业化大规模生产。 单面板,市场流通通用开关电源几乎都采用了单面线路板,其具有低成本的优势,在设计,及生产工艺上采取一些措施亦可确保其性能。 谈谈单面印制板设计的一些体会,由于单面板具有成本低廉,易于制造的特点,在开关电源线路中得到广泛应用,由于其只有一面缚铜,器件的电器连接,机械固定都要依靠那层铜皮,在处理时必须小心。 为保证良好的焊接机械结构性能,单面板焊盘应稍微大一些,以确保铜皮和基板的良好缚着力,而不至于受到震动时铜皮剥离、断脱。一般焊环宽度应大于0.3mm。焊盘孔直径应略大于器件引脚直径,但不宜过大,保证管脚与焊盘间由焊锡连接距离最短,盘孔大小以不妨碍正常查件为度,焊盘孔直径一般大于管脚直径0.1-0.2mm。多引脚器件为保证顺利查件,也可更大一些。 电气连线应尽量宽,原则宽度应大于焊盘直径,特殊情况应在连线于与焊盘交汇必须将线加宽(俗称生成泪滴),避免在某些条件线与焊盘断裂。原则最小线宽应大于0.5mm。 单面板上元器件应紧贴线路板。需要架空散热的器件,要在器件与线路板之间的管脚上加套管,可起到支撑器件和增加绝缘的双重作用,要最大限度减少或避免外力冲击对焊盘与管脚连接处造成的影响,增强焊接的牢固性。线路板上重量较大的部件可增加支撑连接点,可加强与线路板间连接强度,如变压器,功率器件散热器。 单面板焊接面引脚在不影响与外壳间距的前题条件下,可留得长一些,其优点是可增 加焊接部位的强度,加大焊接面积、有虚焊现象可即时发现。引脚长剪腿时,焊接部位受力较小。在台湾、日本常采用把器件引脚在焊接面弯成与线路板成45度 角,然后再焊接的工艺,的其道理同上。今天谈一谈双面板设计中的一些事项,在一 些要求比较高,或走线密度比较大的应用环境中采用双面印制板,其性能及各方面指标要比单面板好很多。 双面板焊盘由于孔已作金属化处理强度较高,焊环可比单面板小一些,焊盘孔孔径可 比管脚直径略微大一些,因为在焊接过程中有利于焊锡溶液通过焊孔渗透到顶层焊盘,以增加焊接可靠性。但是有一个弊端,如果孔过大,波峰焊时在射流锡冲击下部分器件可能上浮,产生一些缺陷。 大电流走线的处理,线宽可按照前帖处理,如宽度不够,一般可采用在走线上镀锡增加厚度进行解决,其方法有好多种 1, 将走线设置成焊盘属性,这样在线路板制造时该走线不会被阻焊剂覆盖,热风整平时会被镀上锡。 2, 在布线处放置焊盘,将该焊盘设置成需要走线的形状,要注意把焊盘孔设置为零。 3, 在阻焊层放置线,此方法最灵活,但不是所有线路板生产商都会明白你的意图,需用文字说明。在阻焊层放置线的部位会不涂阻焊剂。 线路镀锡的几种方法如上,要注意的是,如果很宽的的走线全部镀上锡,在焊接以后,会粘接大量焊锡,并且分布很不均匀,影响美观。一般可采用细长条镀锡宽度在1~1.5mm,长度可根据线路来确定,镀锡部分间隔0.5~1mm双面线路板为布局、走线提供了很大的选择性,可使布线更趋于合理。关于接地,功率地与信号地一定要分开,两个地可在滤波电容处汇合,以避免大脉冲电流通过信号地连线而导致出现不稳定的意外因素,信号控制回路尽量采用一点接地法,有一个技巧,尽量把非接地的走线放置在同一布线层,最后在另外一层铺地线。输出 线一般先经过滤波电容处,再到负载,输入线也必须先通过电容,再到变压器,理论依据是让纹波电流都通过旅滤波电容。 电压反馈取样,为避免大电流通过走线的影响,反馈电压的取样点一定要放在电源输出最末梢,以提高整机负载效应指标。 走线从一个布线层变到另外一个布线层一般用过孔连通,不宜通过器件管脚焊盘实现,因为在插装器件时有可能破坏这种连接关系,还有在每1A电流通过时,至少应有2个过孔,过孔孔径原则要大于0.5mm,一般0.8mm可确保加工可靠性。 器件散热,在一些小功率电源中,线路板走线也可兼散热功能,其特点是走线尽量宽大,以增加散热面积,并不涂阻焊剂,有条件可均匀放置过孔,增强导热性能。 谈谈铝基板在开关电源中的应用和多层印制板在开关电源电路中的应用。 铝基板由其本身构造,具有以下特点:导热性能非常优良、单面缚铜、器件只能放置在缚铜面、不能开电器连线孔所以不能按照单面板那样放置跳线。 铝基板上一般都放置贴片器件,开关管,输出整流管通过基板把热量传导出去,热阻很低,可取得较高可靠性。变压器采用平面贴片结构,也可通过基板散热,其温升比常规要低,同样规格变压器采用铝基板结构可得到较大的输出功率。铝基板跳线可以采用搭桥的方式处理。铝基板电源一般由由两块印制板组成,另外一块板放 置控制电路,两块板之间通过物理连接合成一体。 由于铝基板优良的导热性,在小量手工焊接时比较困难,焊料冷却过快,容易出现问题现有一个简单实用的方法,将一个烫衣服的普通电熨斗(最好有调温功能),翻过来,熨烫面向上,固定好,温度调到150℃左右,把铝基板放在熨斗上面,加温一段时间,然后按照常规方法将元件贴上并焊接,熨斗温度以器件易于焊接为宜,太高有可能时器件损坏,甚至铝基板铜皮剥离,温度太低焊接效果不好,要灵活掌握。 最近几年,随着多层线路板在开关电源电路中应用,使得印制线路变压器成为可能,由于多层板,层间距较小,也可以充分利用变压器窗口截面,可在主线路板上再加一到两片由多层板组成的印制线圈达到利用窗口,降低线路电流密度的目的,由于采用印制线圈,减少了人工干预,变压器一致性好,平面结构,漏感低,偶合 好。开启式磁芯,良好的散热条件。由于其具有诸多的优势,有利于大批量生产,所以得到广泛的应用。但研制开发初期投入较大,不适合小规模生。 开关电源分为,隔离与非隔离两种形式,在这里主要谈一谈隔离式开关电源的拓扑形式,在下文中,非特别说明,均指隔离电源。隔离电源按照结构形式不同,可分为两大类:正激式和反激式。反激式指在变压器原边导通时副边截止,变压器储能。原边截止时,副边导通,能量释放到负载的工作状态,一般常规反激式电源单管 多,双管的不常见。正激式指在变压器原边导通同时副边感应出对应电压输出到负载,能量通过变压器直接传递。按规格又可分为常规正激,包括单管正激,双管正激。半桥、桥式电路都属于正激电路。 正激和反激电路各有其特点,在设计电路的过程中为达到最优性价比,可以灵活运用。一般在小功率场合可选用反激式。稍微大一些可采用单管正激电路,中等功率可采用双管正激电路或半桥电路,低电压时采用推挽电路,与半桥工作状态相同。大功率输出,一般采用桥式电路,低压也可采用推挽电路。 反激式电源因其结构简单,省掉了一个和变压器体积大小差不多的电感,而在中小功率电源中得到广泛的应用。在有些介绍中讲到反激式电源功率只能做到几十瓦,输出功率超过100瓦就没有优势,实现起来有难度。本人认为一般情况下是这样的,但也不能一概而论,PI公司的TOP芯片就可做到300瓦,有文章介绍反激电源可做到上千瓦,但没见过实物。输出功率大小与输出电压高低有关。 反激电源变压器漏感是一个非常关键的参数,由于反激电源需要变压器储存能量,要 使变压器铁芯得到充分利用,一般都要在磁路中开气隙,其目的是改变铁芯磁滞回线的斜率,使变压器能够承受大的脉冲电流冲击,而不至于铁芯进入饱和非线形状态,磁路中气隙处于高磁阻状态,在磁路中产生漏磁远大于完全闭合磁路。 变压器初次极间的偶合,也是确定漏感的关键因素,要尽量使初次极线圈靠近,可采用三明治绕法,但这样会使变压器分布电容增大。选用铁芯尽量用窗口比较长的磁芯,可减小漏感,如用EE、EF、EER、PQ型磁芯效果要比EI型的好。 关于反激电源的占空比,原则上反激电源的最大占空比应该小于0.5,否则环路不容易补偿,有可能不稳定,但有一些例外,如美国PI公司推出的TOP系列芯片是可以工作在占空比大于0.5的条件下。 占空比由变压器原副边匝数比确定,本人对做反激的看法是,先确定反射电压(输出电压通过变压器耦合反映到原边的电压值),在一定电压范围内反射电压提高则工作占空比增大,开关管损耗降低。反射电压降低则工作占空比减小,开关管损耗增大。当然这也是有前提条件,当占空比增大,则意味着输出二极管导通时间缩 短,为保持输出稳定,更多的时候将由输出电容放电电流来保证,输出电容将承受更大的高频纹波电流冲刷,而使其发热加剧,这在许多条件下是不允许的。占空比增大,改变变压器匝数比,会使变压器漏感加大,使其整体性能变,当漏感能量大到一定程度,可充分抵消掉开关管大占空带来的低损耗,时就没有再增大占 空比的意义了,甚至可能会因为漏感反峰值电压过高而击穿开关管。由于漏感大,可能使输出纹波,及其他一些电磁指标变差。当占空比小时,开关管通过电流有效值高,变压器初级电流有效值大,降低变换器效率,但可改善输出电容的工作条件,降低发热。 如何确定变压器反射电压(即占空比) 有网友提到开关电源的反馈环路的参数设置,工作状态分析。由于在上学时高数学的比较差,《自动控制原理》差一点就补考了,对于这一门现在还感觉恐惧,到现在也不能完整写出闭环系统传递函数,对于系统零点、极点的概念感觉很模糊,看波德图也只是大概看出是发散还是收敛,所以对于反馈补偿不敢胡言乱语,但有有 一些建议。如果有一些数学功底,再有一些学习时间可以再把大学的课本《自动控制原理》找出来仔细的消化一下,并结合实际的开关电源电路,按工作状态进行分析。一定会有所收获,论坛有一个帖子《拜师求学反馈环路设计、调式》其中CMG回答得很好,我觉得可以参考。 接着谈关于反激电源的占空比(本人关注反射电压,与占空比一致),占空比还与选择开关管的耐压有关,有一些早期的反激电源使用比较低耐压开关管,如600V或650V作为交流220V输入电源的开关管,也许与当时生产工艺有关,高耐压管子,不易制造,或者低耐压管子有更合理的导通损耗及开关特性,像这种线路反射电压不能太高,否则为使开关管工作在安全范围内,吸收电路损耗的功率也是相当可观的。 实践证明600V管子反射电压不要大于100V,650V管子反射电压不要大于120V,把漏感尖峰电压值钳位在50V时管子还有50V的工作余量。现在 由于MOS管制造工艺水平的提高,一般反激电源都采用700V或750V甚至800-900V的开关管。像这种电路,抗过压的能力强一些开关变压器反射电压也可以做得比较高一些,最大反射电压在150V比较合适,能够获得较好的综 合性能。PI公司的TOP芯片推荐为135V采用瞬变电压抑制二极管钳位。但他的评估板一般反射电压都要低于这个数值在110V左右。这两种类型各有优缺点: 第一类:缺点抗过压能力弱,占空比小,变压器初级脉冲电流大。优点:变压器漏感小,电磁辐射低,纹波指标高,开关管损耗小,转换效率不一定比第二类低。 第二类:缺点开关管损耗大一些,变压器漏感大一些,纹波差一些。优点:抗过压能力强一些,占空比大,变压器损耗低一些,效率高一些。 反激电源反射电压还有一个确定因素 反激电源的反射电压还与一个参数有关,那就是输出电压,输出电压越低则变压器匝数比越大,变压器漏感越大,开关管承受电压越高,有可能击穿开关管、吸收电路消耗功率越大,有可能使吸收回路功率器件永久失效(特别是采用瞬变电压抑制二极管的电路)。在设计低压输出小功率反激电源的优化过程中必须小心处理,其 处理方法有几个: 1、 采用大一个功率等级的磁芯降低漏感,这样可提高低压反激电源的转换效率,降低损耗,减小输出纹波,提高多路输出电源的交差调整率,一般常见于家电用开关电源,如光碟机、DVB机顶盒等。 2、如果条件不允许加大磁芯,只能降低反射电压,减小占空比。降低反射电压可减小漏感但有可能使电源转换效率降低,这两者是一个矛盾,必须要有一个替代过程才能找到一个合适的点,在变压器替代实验过程中,可以检测变压器原边的反峰电压,尽量 降低反峰电压脉冲的宽度,和幅度,可增加变换器的工作安全裕度。一般反射电压在110V时比较合适。 3、增强耦合,降低损耗,采用新的技术,和绕线工艺,变压器为满足安全规范会在原边和副边间采取绝缘措施,如垫绝缘胶带、加绝缘端空胶带。这些将影响变压器漏感性能,现实生产中可采用初级绕组包绕次级的绕法。或者次级用三重绝缘线绕制,取消 初次级间的绝缘物,可以增强耦合,甚至可采用宽铜皮绕制。 文中低压输出指小于或等于5V的输出,像这一类小功率电源,本人的经验是,功率输出大于20W输出可采用正激式,可获得最佳性价比,当然这也不是决对的, 与个人的习惯,应用的环境有关系。 反激电源变压器磁芯在工作在单向磁化状态,所以磁路需要开气隙,类似于脉动直流电感器。部分磁路通过空气缝隙耦合。为什么开气隙的原理本人理解为:由于功率铁氧体也具有近似于矩形的工作特性曲线(磁滞回线),在工作特性曲线上Y轴表示磁感应强度(B),现在的生产工艺一般饱和点在400mT以上,一般此值 在设计中取值应该在200-300mT比较合适、X轴表示磁场强度(H)此值与磁化电流强度成比例关系。磁路开气隙相当于把磁体磁滞回线向X轴向倾斜,在同样的磁感应强度下,可承受更大的磁化电流,则相当于磁心储存更多的能量,此能量在开关管截止时通过变压器次级泻放到负载电路,反激电源磁芯开气隙有两个作用。其一是传递更多能量,其二防止磁芯进入饱和状态。 反激电源的变压器工作在单向磁化状态,不仅要通过磁耦合传递能量,还担负电压变换输入输出隔离的多重作用。所以气隙的处理需要非常小心,气隙太大可使漏感变大,磁滞损耗增加,铁损、铜损增大,影响电源的整机性能。气隙太小有可能使变压器磁芯饱和,导致电源损坏。 所谓反激电源的连续与断续模式是指变压器的工作状态,在满载状态变压器工作于能量完全传递,或不完全传递的工作模式。一般要根据工作环境进行设计,常规反激电源应该工作在连续模式,这样开关管、线路的损耗都比较小,而且可以减轻输入输出电容的工作应力,但是这也有一些例外。 需要在这里特别指出:由于反激电源的特点也比较适合设计成高压电源,而高压电源变压器一般工作在断续模式,本人理解为由于高压电源输出需要采用高耐压的整流二极管。由于制造工艺特点,高反压二极管,反向恢复时间长,速度低,在电流连续状态,二极管是在有正向偏压时恢复,反向恢复时的能量损耗非常大,不利于 变换器性能的提高,轻则降低转换效率,整流管严重发热,重则甚至烧毁整流管。由于在断续模式下,二极管是在零偏压情况下反向偏置,损耗可以降到一个比较低的水平。所以高压电源工作在断续模式,并且工作频率不能太高。 还有一类反激式电源工作在临界状态,一般这类电源工作在调频模式,或调频调宽双模式,一些低成本的自激电源(RCC)常采用这种形式,为保证输出稳定,变 压器工作频率随着,输出电流或输入电压而改变,接近满载时变压器始终保持在连续与断续之间,这种电源只适合于小功率输出,否则电磁兼容特性的处理会很让人头痛。 反激开关电源变压器应工作在连续模式,那就要求比较大的绕组电感量,当然连续也是有一定程度的,过分追求绝对连续是不现实的,有可能需要很大的磁芯,非常多的线圈匝数,同时伴随着大的漏感和分布电容,可能得不偿失。那么如何确定这个参数呢,通过多次实践,及分析同行的设计,本人认为,在标称电压输入时,输出达到50%~60%变压器从断续,过渡到连续状态比较合适。或者在最高输入电压状态时,满载输出时,变压器能够过渡到连续状态就可以了。2023-08-26 09:30:491
开关稳压电源怎么设计
我只知道一部分1、主电路选型。是用升压、降压、升降压,还是正反激、全桥……根据功率来选择主电路。2、脉冲变压器和电感的设计。隔离型电路要设计脉冲变压器,非隔离型的要设计电感。3、驱动电路设计,选个驱动电路,根据不一样的电力电子器件选个不一样的。4、保护电路,这个我不在行。可能还有些部分要设计,我这个只是简单的。找本书看看吧,开关电源设计的参考书很多。2023-08-26 09:31:074
单输入多输出开关电源的设计跪求指导吖。。。。。
到我家买一个回家慢慢研究就好了啊,需要找我2023-08-26 09:31:173
AC/DC开关电源的设计
问下12580或114不行的话,叫他们给你联系相关的厂家电话2023-08-26 09:31:263
开关电源原理与应用设计的目录
第1篇 PWM开关变换器的基本原理第1章 开关变换器概论1.1 什么是开关变换器和开关电源1.2 DC-DC变换器的基本手段和分类1.3 DC-DC变换器主回路使用的元件及其特性1.3.1 开关1.3.2 电感1.3.3 电容1.4 DC-DC变换器发展历程、现状和趋势1.4.1 开关电源技术发展的历程1.4.2 20世纪推动开关电源发展的主要技术1.4.3 开关电源技术发展方向1.4.4 大电容技术第2章 基本的PWM变换器主电路拓扑2.1 Buck变换器2.1.1 线路组成2.1.2 工作原理2.1.3 电路各点的波形2.1.4 主要概念与关系式2.1.5 稳态特性的分析2.2 Boost变换器2.2.1 线路组成2.2.2 工作原理2.2.3 电路各点的波形2.2.4 主要概念与关系式2.2.5 稳态特性的分析2.2.6 纹波电压的分析及减少方法2.3 Buck-Boost变换器2.3.1 线路组成2.3.2 工作原理2.3.3 电路各点的波形2.3.4 主要概念与关系式2.3.5 优缺点2.4 C"uk变换器2.4.1 线路组成2.4.2 工作原理2.4.3 电路各点的波形2.4.4 主要概念与关系式2.5 四种基本型变换器的比较2.6 四种基本型三电平变换器2.6.1 Buck三电平变换器电路与工作原理2.6.2 Buck三电平变换器输出电压与输出电流的关系2.6.3 滤波器设计2.6.4 Boost、Buck-Boost C〖DD(-?5/5〗"〖DD)〗uk三电平变换器第3章 带变压隔离器的DC-DC变换器拓扑3.1 变压隔离器的理想结构3.2 单端变压隔离器的磁复位技术3.3 自激推挽式变换器的工作原理3.4 能量双向流动的DC-DC变压隔离器3.5 隔离式三电平变换器3.5.1 正激变换器3L线路3.5.2 半桥、全桥变换器3L线路第4章 变换器中的功率开关元件及其驱动电路4.1 双极型晶体管4.1.1 晶体管的开关过程4.1.2 开关时间的物理意义及减小的方法4.1.3 抗饱和技术4.2 双极型晶体管的基极驱动电路4.2.1 一般基极驱动电路4.2.2 高压双极型晶体管基极驱动电路4.2.3 比例基极驱动电路4.3 功率场效应管4.3.1 功率场效应管的主要参数4.3.2 功率场效应管的静态特性4.3.3 MOSFET的体内二极管4.4 功率场效应管的驱动问题4.4.1 一般要求4.4.2 MOSFET的驱动电路4.5 绝缘栅双极晶体管4.5.1 IGBT结构与工作原理4.5.2 IGBT的静态工作特性4.5.3 IGBT的动态特性4.5.4 IGBT的栅极驱动及其方法4.6 开关元件的安全工作区及其保护4.6.1 双极型晶体管二次击穿原因及对SOA的影响4.6.2 安全工作区(SOA)4.6.3 保护环节——RC缓冲器第5章 磁性元件的特性与计算5.1 概述5.1.1 在开关电源中磁性元件的作用5.1.2 掌握磁性元件对设计的重要意义5.1.3 磁性材料基本特性的描述5.1.4 磁心型号对照表5.2 磁性材料及铁氧体磁性材料5.2.1 磁心磁性能5.2.2 磁心结构5.3 高频变压器设计方法5.3.1 变压器设计方法之一——面积乘积(AP)法5.3.2 变压器设计方法之二——几何参数(K?G)法5.4 电感器设计方法5.4.1 电感器设计方法之一——面积乘积(AP)法5.4.2 电感器设计方法之二——几何参数(K?G)法5.4.3 无直流偏压的电感器设计5.5 抑制尖波线圈与差模、 共模扼流线圈5.5.1 抑制尖波的电磁线圈5.5.2 差模与共模扼流线圈5.5.3 使用对绞线时干扰的抑制5.5.4 使用电缆线时干扰的抑制5.6 非晶、 超微晶(纳米晶)合金软磁材料特性及应用5.6.1 非晶合金软磁材料的特性5.6.2 超微晶合金软磁材料的特性5.6.3 非晶、 超微晶合金软磁材料的应用第6章 开关电源占空比控制芯片及集成开关变换器的原理与应用6.1 开关电源系统的隔离技术6.2 开关电源PWM控制芯片及智能功率开关6.2.1 1524/2524/3524芯片简介6.2.2 芯片的工作过程6.3 适用于功率场效应管控制的IC芯片6.3.1 1525A与1524的差别6.3.2 1525A/1527A的应用6.4 电流控制型脉宽调制器6.4.1 UC1846/UC1847工作原理及方框图6.4.2 1842/2842/3842 8脚脉宽调制器6.5 智能功率开关及其应用6.5.1 概述6.5.2 工作原理6.6 便携式设备中电源使用的集成块6.6.1 简介6.6.2 MAX863芯片的应用6.6.3 MAX624芯片的应用及设计方法第7章 功率整流管7.1 功率整流二极管7.1.1 功率整流二极管模型7.1.2 功率二极管的主要参数7.1.3 几种快速开关二极管7.2 同步整流技术7.2.1 概述7.2.2 同步整流技术的基本原理7.2.3 同步整流驱动方式7.2.4 同步整流电路7.2.5 SR-Buck变换器7.2.6 SR-正激变换器7.2.7 SR-反激变换器第8章 有源功率因数校正器8.1 AC-DC电路的输入电流谐波分量8.1.1 谐波电流对电网的危害8.1.2 AC-DC变流电路输入端功率因数8.1.3 对AC-DC电路输入端谐波电流限制8.1.4 提高AC-DC电路输入端功率因数和减小输入电流谐波的主要方法8.2 功率因数和THD8.2.1 功率因数的定义8.2.2 AC-DC电路输入功率因数与谐波的关系8.3 Boost功率因数校正器(PFC)的工作原理8.3.1 功率因数校正的基本原理8.3.2 Boost有源功率因数校正器(APFC)的主要优缺点8.4 APFC的控制方法8.4.1 常用的三种控制方法8.4.2 电流峰值控制法8.4.3 电流滞环控制法8.4.4 平均电流控制法8.4.5 PFC集成控制电路UC3854A/B简介8.5 反激式功率因数校正器8.5.1 DCM反激功率因数校正电路的原理8.5.2 等效输入电阻R?e8.5.3 平均输出电流和输出功率8.5.4 DCM反激变换器等效电路平均模型第9章 开关电源并联系统的均流技术9.1 概述9.2 开关电源并联系统常用的均流方法9.2.1 输出阻抗法9.2.2 主从设置法9.2.3 按平均电流值自动均流法9.2.4 最大电流法自动均流9.2.5 热应力自动均流法9.2.6 外加均流控制器均流法第10章 开关电源的小信号分析及闭环稳定和校正10.1 概述10.2 电感电流连续时的状态空间平均法10.3 电流连续时的平均等效电路标准化模型10.4 电流不连续时标准化模型10.5 复杂变换器的模型10.6 用小信号法分析有输入滤波器时开关电源的稳定问题10.7 开关电源控制原理及稳定问题10.7.1 闭环及开环控制10.7.2 开关电源结构框图10.8 稳定判别式波德图绘制10.8.1 常见环节的幅频特性和相频特性10.8.2 快速绘制开环对数特性曲线的方法10.8.3 用开环特性分析系统的动态性能10.9 实测波德图的方法及相关设备10.9.1 开环系统直接注入法10.9.2 闭环回路直接注入法10.10 测定波德图,确定误差放大器的参数10.10.1 TL431相关测定技术10.10.2 提高稳定性的设计方法10.10.3 参数变化影响趋势的分析第2篇 PWM开关变换器的设计与制作〖KH1D〗第11章 反激变换器的设计11.1 概述11.1.1 电磁能量储存与转换11.1.2 工作方式的进一步说明11.1.3 变压器的储能能力11.1.4 反激变换器的同步整流11.2 反激式变换器的设计方法举例11.2.1 电源主回路11.2.2 变压器设计11.2.3 设计112W反激变压器11.2.4 设计中的几个问题11.2.5 计算变压器的另一种方法11.3 反激变换器的缓冲器设计11.3.1 反激变换器的开关应力11.3.2 跟踪集电极电压钳位环节11.3.3 缓冲器环节工作波形11.3.4 缓冲器参数的确定11.3.5 低损耗缓冲器11.4 双晶体管的反激变换器11.4.1 概述11.4.2 工作原理11.4.3 工作特点11.4.4 缓冲器11.4.5 工作频率11.4.6 驱动电路11.4.7 变压器设计注意漏电感和匝数第12章 单端正激变换器的设计12.1 概述12.2 工作原理12.2.1 电感的最小值与最大值12.2.2 多路输出12.2.3 能量再生线圈P?2的工作原理12.2.4 单端正激变换器同步整流12.2.5 正激变换器的优缺点12.3 变压器设计方法12.3.1 方法一12.3.2 方法二第13章 双晶体管正激变换器的设计13.1 概述13.1.1 线路组成13.1.2 工作原理13.1.3 电容C的作用13.2 双晶体管正激变换器变压器设计13.3 正激变换器的闭环控制及参数计算13.3.1 UPC 1099的极限使用值和主要电性能13.3.2 UPC 1099的应用第14章 半桥变换器的设计14.1 半桥变换器的工作原理14.2 偏磁现象及其防止方法14.2.1 偏磁的可能性14.2.2 串联耦合电容改善偏磁性能14.2.3 串联耦合电容的选择14.2.4 阶梯式趋向饱和的可能性及其防止14.2.5 直通的可能性及其防止14.3 软启动及双倍磁通效应14.3.1 双倍磁通效应14.3.2 软启动线路14.4 变压器设计14.5 控制电路第15章 桥式变换器的设计15.1 概述15.2 工作原理15.2.1 概述15.2.2 工作过程15.2.3 缓冲器的组成及作用15.2.4 瞬变时的双倍磁通效应15.3 变压器设计方法15.3.1 设计步骤及举例15.3.2 几个问题第16章 双驱动变压器推挽变换器的设计16.1 概述16.1.1 线路结构16.1.2 工作原理16.1.3 各点波形16.2 开关功率管的缓冲环节16.3 推挽变换器中变压器的设计第17章 H7C1为材质PQ磁心高频变压器的设计17.1 损耗及设计原则简介17.1.1 设计原则17.1.2 满足设计原则的条件17.2 表格曲线化的设计方法17.2.1 表17.1的形成与说明17.2.2 扩大表17.1的使用范围第18章 电子镇流器的设计18.1 概述18.1.1 荧光灯18.1.2 荧光灯的结构及伏安特性18.1.3 高频电子镇流器的基本结构18.2 半桥串联谐振式电子镇流器18.3 带有源、无源功率因数电路的电子镇流器18.3.1 有源功率因数校正电子镇流器18.3.2 无源功率因数校正电子镇流器第19章 开关电源设计与制作的常见问题19.1 干扰与绝缘19.1.1 干扰问题及标准19.1.2 隔离与绝缘19.2 效率与功率因数19.2.1 高效率与高功率密度19.2.2 高功率因数19.3 智能化与高可靠性19.4 高频电流效应与扁平变压器设计19.4.1 趋肤效应和邻近效应的产生19.4.2 扁平变压器的设计?第3篇 软开关-PWM变换器第20章 软开关功率变换技术20.1 硬开关技术与开关损耗20.2 高频化与软开关技术20.3 零电流开关和零电压开关20.4 谐振变换器20.5 准谐振变换器20.6 多谐振变换器概述第21章 ZCS-PWM和ZVS-PWM变换技术21.1 ZCS-PWM变换器21.1.1 工作原理21.1.2 运行模式分析21.1.3 分析21.1.4 ZCS-PWM变换器的优缺点21.2 ZVS-PWM变换器21.2.1 工作原理21.2.2 运行模式分析21.2.3 分析21.2.4 ZVS-PWM变换器的优缺点第22章 零转换-PWM软开关变换技术22.1 零转换-PWM变换器22.2 ZCT-PWM变换器22.2.1 工作原理22.2.2 运行模式分析22.2.3 ZCT-PWM变换器的优缺点22.2.4 数例分析22.3 三端ZCT-PWM开关电路22.4 ZVT-PWM变换器22.4.1 工作原理22.4.2 运行模式分析22.4.3 ZVT-PWM变换器的优缺点22.4.4 应用举例22.4.5 三端零电压开关电路22.4.6 双管正激ZVT-PWM变换器第23章 移相控制全桥ZVS-PWM变换器23.1 DC-DC FB ZVS-PWM DC-DC变换器的工作原理23.2 PSC FB ZVS-PWM变换器运行模式分析23.3 PSC FB ZVS-PWM变换器几个问题的分析23.3.1 占空比分析23.3.2 PSC FB ZVS-PWM变换器两桥臂开关管的ZVS条件分析23.4 PSC FB ZCZVS-PWM变换器第24章 有源钳位软开关PWM变换技术24.1 概述24.2 有源钳位电路24.3 有源钳位ZVS-PWM正激变换器稳态运行分析24.4 有源钳位并联交错输出的反激变换器24.5 有源钳位反激-正激变换器第4篇 开关电源的计算机辅助分析与设计第25章 开关电源的计算机仿真25.1 电力电子电路的计算机仿真技术25.1.1 计算机仿真技术25.1.2 电路仿真分析(建模)方法25.1.3 SPICE和PSPICE仿真程序25.2 用SPICE和PSPICE通用电路模拟程序仿真开关电源25.2.1 概述25.2.2 功率半导体开关管的SPICE仿真模型25.2.3 控制电路的SPICE仿真模型25.2.4 正激PWM开关电源的SPICE仿真25.2.5 推挽式PWM开关电源的PSPICE仿真及补偿网络参数优化选择25.3 离散时域法仿真25.3.1 概述25.3.2 数值法求解分段线性网络的状态方程25.3.3 求解网络拓扑的转换时刻(边界条件)25.3.4 非线性差分方程(大信号模型)25.3.5 小信号模型25.3.6 程序框图25.3.7 仿真计算举例第26章 开关电源的最优设计26.1 概述26.1.1 可行设计26.1.2 最优设计26.1.3 开关电源的主要性能指标26.2 工程最优化的基本概念26.2.1 优化设计模型26.2.2 设计变量26.2.3 目标函数26.2.4 约束26.2.5 优化数学模型的一般形式26.2.6 工程优化设计的特点26.3 应用最优化方法的几个问题26.3.1 最优解的性质26.3.2 初始点的选择26.3.3 收敛数据26.3.4 变量尺度的统一26.3.5 约束值尺度的统一26.3.6 多目标优化问题26.4 DC-DC桥式开关变换器的最优设计26.4.1 DC-DC半桥式PWM开关变换器主要电路的优化设计26.4.2 开关、 整流滤波电路的优化设计数学模型26.4.3 变压器的优化设计数学模型26.4.4 半桥PWM开关变换器优化设计的实现26.4.5 5V/500W输出 DC-DC半桥PWM开关变换器优化设计举例26.4.6 DC-DC全桥ZVS-PWM变换器主电路的优化设计26.5 单端反激PWM开关变换器的优化设计26.5.1 数学模型概述26.5.2 多路输出等效为一路输出的方法26.5.3 优化设计举例26.6 PWM开关电源控制电路补偿网络的优化设计26.6.1 概述26.6.2 开关电源瞬态响应特性简介26.6.3 开关变换器的频域特性26.6.4 PWM开关变换器小信号模型26.6.5 瞬态优化设计数学模型26.6.6 计算举例26.7 DC-DC全桥移相式ZVS-PWM开关电源补偿网络的最优设计26.7.1 主电路及电压、 电流波形26.7.2 FB ZVS-PWM变换器小信号模型26.7.3 FB ZVS-PWM变换器主电路传递函数及频率特性26.7.4 FB ZVS-PWM开关电源补偿网络最优设计模型26.7.5 典型设计举例2023-08-26 09:31:501
开关电源变压器设计?
budong2023-08-26 09:33:054
谁有开关电源设计(第二版)PDF
开关电源设计第二版 密码:12yv2023-08-26 09:33:131
开关稳压电源设计,大家给我出个主意,高分奖励
http://www.queshao.com/docs/18452/这个我做过,不错的。好了要加分2023-08-26 09:33:334
采用UC3842控制反激式50W开关电源设计
UC3842是由Unitrode公司开发的新型控制器件,是国内应用比较广泛的一种电流控制型脉宽调制器。所谓电流型脉宽调制器是按反馈电流来调节脉宽的。在脉宽比较器的输入端直接用流过输出电感线圈电流的信号与误差放大器输出信号进行比较,从而调节占空比使输出的电感峰值电流跟随误差电压变化而变化。由于结构上有电压环、电流环双环系统,因此,无论开关电源的电压调整率、负载调整率和瞬态响应特性都有提高,是比较理想的新型的控制器闭。 电路设计和原理1.1 UC3842工作原理 uc3842中文资料下载 UC3842是单电源供电,带电流正向补偿,单路调制输出的集成芯片,其内部组成框图如图l所示。其中脚1外接阻容元件,用来补偿误差放大器的频率特性。脚2是反馈电压输入端,将取样电压加到误差放大器的反相输入端,再与同相输入端的基准电压进行比较,产生误差电压。脚3是电流检测输入端,与电阻配合,构成过流保护电路。脚4外接锯齿波振荡器外部定时电阻与定时电容,决定振荡频率,基准电压VREF为0.5V。输出电压将决定变压器的变压比。由图1可见,它主要包括高频振荡、误差比较、欠压锁定、电流取样比较、脉宽调制锁存等功能电路。UC3842主要用于高频中小容量开关电源,用它构成的传统离线式反激变换器电路在驱动隔离输出的单端开关时,通常将误差比较器的反向输入端通过反馈绕组经电阻分压得到的信号与内部2.5V基准进行比较,误差比较器的输出端与反向输入端接成PI补偿网络,误差比较器的输出端与电流采样电压进行比较,从而控制PWM序列的占空比,达到电路稳定的目的。1.2 系统原理 本文以UC3842为核心控制部件,设计一款AC 220V输入,DC 24V输出的单端反激式开关稳压电源。开关电源控制电路是一个电压、电流双闭环控制系统。变换器的幅频特性由双极点变成单极点,因此,增益带宽乘积得到了提高,稳定幅度大,具有良好的频率响应特性。 主要的功能模块包括:启动电路、过流过压欠压保护电路、反馈电路、整流电路。以下对各个模块的原理和功能进行分析。电路原理图如图2所示。1.2.1 启动电路 如图2所示交流电由C16、L1、C15以及C14、C13进行低通滤波,其中C16、C15组成抗串模干扰电路,用于抑制正态噪声;C14、C13、L1组成抗共模干扰电路,用于抑制共态噪声干扰。它们的组合应用对电磁干扰由很强的衰减旁路作用。滤波后的交流电压经D1~D4桥式整流以及电解电容C1、C2滤波后变成3lOV的脉动直流电压,此电压经R1降压后给C8充电,当C8的电压达到UC3842的启动电压门槛值时,UC3842开始工作并提供驱动脉冲,由脚6输出推动开关管工作。随着UC3842的启动,R1的工作也就基本结束,余下的任务交给反馈绕组,由反馈绕组产生电压给UC3842供电。由于输入电压超过了UC3842的工作,为了避免意外,用D10稳压管限定UC3842的输入电压,否则将出现UC3842被损坏的情况。1.2.2 短路过流、过压、欠压保护电路 由于输入电压的不稳定,或者一些其他的外在因素,有时会导致电路出现短路、过压、欠压等不利于电路工作的现象发生,因此,电路必须具有一定的保护功能。如图2所示,如果由于某种原因,输出端短路而产生过流,开关管的漏极电流将大幅度上升,R9两端的电压上升,UC3842的脚3上的电压也上升。当该脚的电压超过正常值0.3V达到1V(即电流超过1.5A)时,UC3842的PWM比较器输出高电平,使PWM锁存器复位,关闭输出。这时,UC3842的脚6无输出,MOS管S1截止,从而保护了电路。如果供电电压发生过压(在265V以上),UC3842无法调节占空比,变压器的初级绕组电压大大提高,UC3842的脚7供电电压也急剧上升,其脚2的电压也上升,关闭输出。如果电网的电压低于85V,UC3842的脚1电压也下降,当下降lV(正常值是3.4V)以下时,PWM比较器输出高电平,使PWM锁存器复位,关闭输出。如果人为意外地将输出端短路,这时输出电流将成倍增大,使得自动恢复开关RF内部的热量激增,它立即断开电路,起到过压保护作用。一旦故障排除,自动恢复开关RF在5s之内快速恢复阻抗。因此,此电路具有短路过流、过压、欠压三重保护。1.2.3 反馈电路 反馈电路采用精密稳压源TL431和线性光耦PC817。利用TL43l可调式精密稳压器构成误差电压放大器,再通过线性光耦对输出进行精确的调整。如图2所示,R4、R5是精密稳压源的外接控制电阻,它们决定输出电压的高低,和TL431一并组成外部误差放大器。当输出电压升高时,取样电压VR7也随之升高,设定电压大于基准电压(TL431的基准电压为2.5V),使TL431内的误差放大器的输出电压升高,致使片内驱动三极管的输出电压降低,也使输出电压Vo下降,最后Vo趋于稳定;反之,输出电压下降引起设置电压下降,当输出电压低于设置电压时,误差放大器的输出电压下降,片内的驱动三极管的输出电压升高,最终使得UC3842的脚1的补偿输入电流随之变化,促使片内对PWM比较器进行调节,改变占空比,达到稳压的目的。R7、R8的阻值是这样计算的:先固定R7的阻值,再计算R8的阻值,即 1.2.4 整流滤波电路 输出整流滤波电路直接影响到电压波纹的大小,影响输出电压的性能。开关电源输出端中对波纹幅值的影响主要有以下几个方面。 (1)输入电源的噪声,是指输入电源中所包含的交流成分。解决的方案是在电源输入端加电容C5,以滤除此噪声干扰。 (2)高频信号噪声,开关电源中对直流输入进行高频的斩波,然后通过高频的变压器进行传输,在这个过程中,必然会掺人高频的噪声干扰。还有功率管器件在开关的过程中引起的高频噪声。对于这类高频噪声的解决方案是在输出端采用π型滤波的方式。滤波电感采用150μH的电感,可滤除高频噪声。 (3)采用快速恢复二极管D6、D7整流。基于低压、功耗低、大电流的特点,有利于提高电源的效率,其反向恢复时间短,有利于减少高频噪声。并联整流二极管减小尖峰电压 在大功率的整流电路中,次级整流桥电路存在较大杂散电感,输出整流管在换流时,由于电路中存在寄生振荡,整流管会承受较大的尖峰电压,尖峰电压的存在提高了对整流二极管的耐压要求,也将带来额外的电路损耗。整流桥的寄生振荡产生于变压器的漏感(或附加的谐振电感)与变压器的绕组电容和整流管的结电容之间。 当副边电压为零时,在全桥整流器中4只二极管全部导通,输出滤波电感电流处于自然续流状态。而当副边电压变化为高电压Vin/K(K为变压器变比)时,整流桥中有两只二极管要关断,两只二极管继续导通。这时候变压器的漏感(或附加的谐振电感)就开始和关断的整流二极管的电容谐振。即使采用快恢复二极管,二极管依然会承受至少两倍的尖峰电压,因此,必须采用有效的缓冲电路,有许多文献对此作了研究,归纳起来有5种方式:RC缓冲电路,RCD缓冲电路,主动箝位缓冲电路,第三个绕组加二极管箝位缓冲电路,原边侧加二极管箝位缓冲电路。在这里提出另一种减小二极管尖峰电压有效的方法:即整流二极管并联,其具体的电路图如图3所示。 并且这种方法在大功率全桥移相DC/DC电源变换器的项目中得到了应用,实验波形验证了该方法,实验结果如图4所示,其中图4(a)是整流桥电压波形,可以看出,由于变压器的漏感和二极管的结电容以及变压器的绕组电容之间发生的高频振荡,使二极管存在很高的尖峰电压;图4(b)是采用并联整流二极管之后整流桥电压波形,明显尖峰电压减小很多,验证了该方法的有效性。实验结果及分析 对设计的电路进行了实验,图5示出了实验波形。图5(a)上波形为UC3842的脚4三角波振荡波形,下波形为UC3842的脚6驱动开关管的PWM波;图5(b)上波形为满载时输出电压直流分量Vdc,下波形为交流纹波Vripp。 UC3842是一种高性能的固定频率电流型控制器,单端输出,可直接驱动晶体管和MOSFET,具有管脚数量少、外围电路简单、安装与调试简便、性能优良、价格低廉等优点,在100W以下的开关电源中有很好的应用前景。 详细: http://www.jdzj.com/diangong/article/2009-8-12/11597-1.htm2023-08-26 09:33:421
开关电源调试,如何调试设计好的开关电源方案
先理论技术,在在实际中优化设计,要用示波器观察波形是否正确。2023-08-26 09:33:536
开关电源设计第三版81页的 开关管关断时所承受的最大电压应力为120V是怎么来的啊 求指导啊
反激电压的1.4倍加上原电压.2023-08-26 09:34:094
电赛开关电源需要哪些知识和技能?
电赛开关电源设计需要以下几个方面的知识和技能:1. 电源原理:了解电源稳压与限流特性、功率转换等原理。2. 元器件知识:掌握开关管、变压器、滤波电容、电感等元器件的特性和参数。3. 电路设计:能够设计基本的开关电源电路原理图和PCB布线。4. 调试和验证:能够使用不同类型的仪器,例如示波器、多用表、功能发生器等来进行电路调试和验证电路性能。5. 安全规范:遵守电路设计的相关安全规范和标准,如使用安全带、保持清洁等等。要设计一个成功的开关电源,需要掌握电源基础原理和电路设计知识,也需要具备实验和调试能力,同时还需要注重安全规范,保证整个设计过程顺利、安全、高效。2023-08-26 09:34:171
开关电源输出的实际电流是按负载决定的还是按开关电源设计的额定输出电流输出的?
可以这样来理解,你家里的市电供电系统能提供给你20A约5千瓦的话,你插个手机充充电,实际消耗20A电流5千瓦么2023-08-26 09:34:274
硬件DC-DC开关电源设计,帮忙看一下!
硬件DC-DC开关电源设计需要给你完成吗.2023-08-26 09:34:552
开关电源变压器的设计要点有哪些?
开关电源变压器是由电感线圈构成的,所以完全遵循电感器的运算规则,可以把电源变压器初级串联,也可以在输出的次级串联, 1.电源变压器的次级串联。 电源变压器的次级串联是在单个功率满足情况下,而次级输出电压不满足时将两个或多个变压器的组合。如两个变压器的初级输入为220V,次级输出为18V时,如要给负载供33V电压,则可以将两个变压器的次级串联起来应用。电源变压器的次级串联也是很容易的,不同的次级输出只要保证单个变压器功率的条件下也是可以将其次级串联应用的。在理想状况下多个变压器的初级输入电压相同时,总输出计算式为:V总=V初单/(V1次+V2次+……Vn次)。2023-08-26 09:35:431
开关电源典型设计实例精选的书籍目录
前言第一章 有源功率因数校正电路(PFC)实例1 基于NCP1601制作的100WPFC升压电路实例2 基于IR1150实现300W PFC单周期控制实例3 基于L4981 PFC控制器实现无整流桥PFC结构实例4 基于MC33260降低功耗的PFC控制方法第二章 电视机与LCD TV电源实例1 基于ICE1 QS01控制器构成的250W电视机电源实例2 基于L6563+L6599组成的200W高效LCD电源实例3 基于TEA1504组成的200W电视机电源实例4 基于TEA1610实现的90W谐振式电视机电源实例5 基于UBA2070构成的LCD TV一体化电源实例6 使用VIPer53设计的LCD显示器电源实例7 用ML4800组成的200W LCD TV电源实例8 由FAN7554构成的26in LCD TV电源实例9 由L6598构成的180W彩电用零电压谐振变换器实例10 基于FSDL0165构成的低成本DVD电源实例11 由TOP233Y构成的35W多路机顶盒电源第三章 适配器电源实例1 基于FAN4803构成的85W适配器实例2 基于ICE3DS01实现待机功耗小于100mW的电源实例3 基于iW2210一次控制模式实现60W适配器电源实例4 基于L6562与UCC38C44构成的120W适配器实例5 基于L6565构成的120W适配器实例6 基于NCP1337实现谐振式60W适配器实例7由ACT30DH构成的15W恒功率型电源实例8 由NCP1050组成的10W适配器实例9 由NCP1200构成的10W电源适配器实例10 由RCC电路组成的13W开关电源实例11 基于UC3845实现超宽输入电压开关电源实例12 基于SG3842GS组成的60W开关电源第四章 充电器电源实例1 基于LNK501构成无Y电容2.75W充电器实例2 基于UC3843构成的80W充电器实例3 由NCP1207构成的60W高精度充电器实例4 由NCP1207构成的脉冲式充电器实例5 由PIC12C671 8位A/D微控制器构成的600W充电器实例6 由L6598构成的240W谐振式充电器第五章 工业与PC电源实例1 基于ICE28765P组成的240W多路输出电源实例2 基于IRIS4015构成的150W开放式电源实例3 基于LM5021构成的50W双路开关电源实例4 基于NCP1012构成的1W双输出转换器实例5 基于PKS606Y组成的打印机电源实例6 基于UCC3895实现高效率、高可靠性300W通信电源实例7 基于UCC28600构成的150W高效绿色电源实例8 用ML4800组成的300W ATX开关电源实例9 由FAN7554构成的150W精密开关电源实例10 由NCP1280构成的300W工业电源实例11 由UC3842A构成的30W通信电源实例12 基于TDA16888构成的200W电源第六章 其他小功率电源实例1 由TOP202Y构成的15w恒功率型电源实例2 由TOP202Y组成的16W截流型开关电源实例3 由TOP221P构成的4W后备式开关电源实例4 由TOP232Y构成的17W双路待机电源第七章 输出功率小于100W的直流-直流电源实例1 基于UC3843A组成高效率低成本直流电源实例2 基于13842构成的15W双路直流电源实例3 基于LM5000实现反激式连续模式电源的设计实例4 基于LM5032实现双隔行扫描直流转换器实例5 基于LT3825构成40W同步反激式无光耦转换器实例6 基于NCP1031构成的2.5W超宽输入双路输出电源实例7 基于:NCP1031实现6.5W POE直流一直流转换器实例8 基于NCP1216A实现36W单端正激直流转换器实例9 基于SG3525A构成50W高压输出直流转换电源实例10 基于STSR2构成的20W同步整流直流转换电源实例11 基于UCC2540实现双整流输出直流转换器实例12 由FS6X1220RT组成的24W反激式通信电源实例13 由RCC电路组成的低压多路输出直流转换电源实例14 由SG3525A构成的60W直流变换器实例15 由UC3843A组成的20W正激式通信电源第八章 输出功率大于100W的直流直流电源实例1 基于SG3525A组成200W倍流同步整流电路实例2 保护功能完善的120W高效直流变换器实例3 基于FAN7554构成的216W电源实例4 基于IR2086构成的330W高效直流转换器实例5 基于LM5041实现125W级联推挽同步整流电路实例6 基于LT1952实现100W正激同步整流电路实例7 基于MAXS069A构成的高效直流转换器实例8 基于NCP1560实现100W直流转换电源实例9 基于SG3525A构成的130W高效直流变换器实例10 基于全桥硬开关组成的160W高可靠性电源参考文献2023-08-26 09:36:061
开关电源高频变压器的设计要点
高频变压器是开关电源的非常重要的器件。和你要设计的电源形式有很大关系。正激式,反激式,全桥电路高频变压器设计大不相同。2023-08-26 09:36:212
开关电源设计中,整流后的310V如何在启动时给15v的Ic供电并在电源正常工作时由Vcc绕组供电?
启动前通过一个电阻限流后给芯片供电,启动后通过开关变压器的一个绕组经整流滤波后给芯片持续供电。2023-08-26 09:36:301
谁有 开关电源设计 完整的教学视频 跪求大神
看书吧,会好一点。视频大都讲不透切。2023-08-26 09:36:403
当今开关电源设计方案面临的考验和未来发展趋势是什么?立维创展
这个看个人见解了,未来开关电源有可能朝智能化,高功率 小型化方面发展,以便应对智能设备的发展,包含方便携带等。2023-08-26 09:36:481
基于UC3842的电流控制型开关电源的设计论文谁知道做?
图1 UC3842典型应用电路 2 UC3842保护电路的缺陷 2.1 过载保护的缺陷 当电源过载或输出短路时,UC3842的保护电路动作,使输出脉冲的占空比减小,输出电压降低,UC3842的供电电压也跟着降低,当低到UC3842不能工作时,整个电路关闭,然后通过R6开始下一次启动过程。这种保护被称为“打嗝”式(hiccup)保护。在这种保护状态下,电源只工作几个开关周期,然后进入很长时间(几百ms到几s)的启动过程,因此,它的平均功率很低。但是,由于变压器存在漏感等原因,有的开关电源在每个开关周期都有很高的开关尖峰电压,即使在占空比很小的情况下,辅助供电电压也不能降到足够低,所以不能实现理想的保护功能。 2.2 过流保护的缺陷 UC3842的过流保护功能是通过脚3实现的。当脚3上检测的电压高于1V时,就会使UC3842内部的比较器翻转,将PWM锁存器置零,使脉冲调制器处于关闭状态,从而实现了电路的过流保护。由于检测电阻能感应出峰值电感电流,所以自然形成逐个脉冲限流电路,只要检测电阻上的电平达到1V,脉宽调制器立即关闭,因此这种峰值电感电流检测技术可以精确限制输出的最大电流,使得开关电源中的磁性元件和功率器件不必设计较大的余量,就能保证稳压电源的工作可靠。但是,通常我们采用的采样电阻都是金属膜或氧化膜电阻,这种电阻是有感的,当电流流过取样电阻时,就会感生一定的感性电压。这个电感分量在高频时呈现的阻抗会很大,因此它将消耗很大的功率。随着频率的增加,流过取样电阻的电流有可能在下一个振荡周期到来之前还没放完,取样电阻承受的电流将越来越大,这样将会引起UC3842的误操作,甚至会引起炸机。因此,UC3842的这种过流保护功能有时难以起到很好的保护作用,存在着一定的缺陷。 2.3 电路稳定性的缺陷 在图1所示的电路中,当电源的占空比大于50%,或变压器工作在连续电流条件下时,整个电路就会产生分谐波振荡,引起电源输出的不稳定。图2表示了变压器中电感电流的变化过程。设在t0时刻,开关开始导通,使电感电流以斜率m1上升,该斜率是输入电压除以电感的函数。t1时刻,电流取样输入达到由控制电压建立的门限,这导致开关断开,电流以斜率m2衰减,直至下一个振荡周期。如果此时有一个扰动加到控制电压上,那么它将产生一个ΔI,这样我们就会发现电路存在着不稳定的情况,即在一个固定的振荡器周期内,电流衰减时间减少,最小电流开关接通时刻t2上升了ΔI+ΔIm2/m1,最小电流在下一个周期t3减小到(ΔI+ΔIm2/m1)(m2/m1),在每一个后续周期,该扰动m2/m1被相乘,在开关接通时交替增加和减小电感电流,也许需要几个振荡器周期才能使电感电流为零,使过程重新开始,如果m2/m1大于1,变换器将会不稳定。因此,图1所示的电路在某些状态下存在着一定的失稳隐患。 图2 电感电流波形图 3 保护电路的改进 针对上述分析,改进电路如图3所示,该电路具有以下特点。 1)通过在UC3842的采样电压处接入一个射极跟随器,从而在控制电压上增加了一个与脉宽调制时钟同步的人为斜坡,它可以在后续的周期内将ΔI扰动减小到零。因此,即使系统工作在占空比大于50%或连续的电感电流条件下,系统也不会出现不稳定的情况。不过该补偿斜坡的斜率必须等于或略大于m2/2,系统才能具有真正的稳定性。 2)取样电阻改用无感电阻。无感电阻是一种双线并绕的绕线电阻,其精度高且容易做到大功率。采用无感电阻后,其阻抗不会随着频率的增加而增加。这样,即使在高频情况下取样电阻所消耗的功率也不会超过它的标称功率,因此也就不会出现炸机现象。 3)反馈电路改用TL431加光耦来控制。我们都知道放大器用作信号传输时都需要传输时间,并不是输出与输入同时建立。如果把反馈信号接到UC3842的电压反馈端,则反馈信号需连续通过两个高增益误差放大器,传输时间增长。由于TL431本身就是一个高增益的误差放大器,因此,在图3中直接采用脚1做反馈,从UC3842的脚8(基准电压脚)拉了一个电阻到脚1,脚2通过R18接地。这样做的好处是,跳过了UC3842的内部放大器,从而把反馈信号的传输时间缩短了一半,使电源的动态响应变快。另外,直接控制UC3842的脚1还可简化系统的频率补偿以及输出功率小等问题。 图3 改进的UC3842应用电路 4 实验结果 图4给出了UC3842检测电阻的电压波形和采样信号波形。从图4中可以看出,经过改进后的电路,其采样信号的波形紧紧跟随检测电阻的电压波形,没有出现非常大的尖峰电压。因此,该电路能有效避免因变压器漏感等异常干扰引起的电源误操作的问题,也能有效避免因电源占空比过大而引起的系统不稳定的问题。 图4 检测电阻电压及采样信号波形 5 结语 UC3842是一种性能优良的电流控制型脉宽调制器,但在实际的应用过程中,它的保护电路存在着一定的缺陷,因此,在电源的设计过程中,必须对其保护电路进行改进。实验证明,经过改进后的保护电路使系统性能更加稳定可靠。 免费考研网www.freekaoyan.com2023-08-26 09:36:561
目前国内开关电源设计,哪些模块比较成熟,即不需要在电路中重新设计,而拿来成熟电路直接用就要可以了哈
变压器的磁芯空气间隙是难题哇2023-08-26 09:37:055
怎么设计开关电源中的变压器
开关电源及电路图U0大于输入电压Ui,极性相同。 Buck-Boost电路 ——降压或升压斩波器,其 输出平均电压U0大于或小于输入电压Ui,极性相反,电感传输。 Cuk电路 ——降压或升压斩波器,其输出平均电 压U0大于或小于输入电压Ui,极性相反,电容传输。 还有Sepic、Zeta电路。 隔离型电路 上述为非隔离型电路,隔离型电路有正激电路、反激电路、半桥电路、全桥电路、推挽电路。 当今软开关技术使得DC/DC发生了质的飞跃,美国VICOR公司设计制造的多种ECI软开关DC/DC变换器,其最大输出功率有300W、600W、800W等,相应的功率密度为(6.2、10、17)W/cm3,效率为(80~90)%。日本NemicLambda公司最新推出的一种采用软开关技术的高频开关电源模块RM系列,其开关频率为(200~300)kHz,功率密度已达到27W/cm3,采用同步整流器(MOSFET代替肖特基二极管),使整个电路效率提高到90%。 AC/DC变换 AC/DC变换是将交流变换为直流,其功率流向可以是双向的,功率流由电源流向负载的称为“整流”,功率流由负载返回电源的称为“有源逆变”。AC/DC变换器输入为50/60Hz的交流电,因必须经整流、滤波,因此体积相对较大的滤波电容器是必不可少的,同时因遇到安全标准(如UL、CCEE等)及EMC指令的限制(如IEC、、FCC、CSA),交流输入侧必须加EMC滤波及使用符合安全标准的元件,这样就限制AC/DC电源体积的小型化,另外,由于内部的高频、高压、大电流开关动作,使得解决EMC电磁兼容问题难度加大,也就对内部高密度安装电路设计提出了很高的要求,由于同样的原因,高电压、大电流开关使得电源工作损耗增大,限制了AC/DC变换器模块化的进程,因此必须采用电源系统优化设计方法才能使其工作效率达到一定的满意程度。 AC/DC变换按电路的接线方式可分为,半波电路、全波电路。按电源相数可分为,单相、三相、多相。按电路工作象限又可分为一象限、二象限、三象限、四象限。 开关电源的选用 开关电源在输入抗干扰性能上,由于其自身电路结构的特点(多级串联),一般的输入干扰如浪涌电压很难通过,在输出电压稳定度这一技术指标上与线性电源相比具有较大的优势,其输出电压稳定度可达(0.5~1)%。开关电源模块作为一种电力电子集成器件,要注意选择。2023-08-26 09:37:341
开关电源变压器设计的详细步骤及计算步骤,
百度就可以了2023-08-26 09:37:444
《开关电源设计》要求:输入电压DC12V,输出电压/电流:+5V/1A,-5V/100mA,效率>75%。跪求大神!!!
按照你的描述,电源是需要2路输出的,功率也比较小,非隔离的拓扑比较麻烦,你就用反激吧,比较简单。你要有一点基础,你可以再追问,我教你怎么设计;要是一点基础都没,靠这打字讲解清楚 还比较困难。2023-08-26 09:38:281
单端反激式开关电源设计中最大占空比D,工作频率f,匝比n是如何设定的,或者是自己先假设一个用?
主要受开关功率管、整流管的导通、截止时间控制:频率高、占空比大,留给开关器件的开、关转换时间越短;如果器件不能在这个短暂的时间内完全截止,会出现不能可靠关断的可能,相当于这个器件会瞬间短路。理论上,单端电路占空比最大为50%,越接近这个极限,电路的输出功率越大。所以,在器件满足要求的前提下,占空比越大越好。2023-08-26 09:38:502
反激式开关电源的设计
这个资料很详细,希望对你有帮助。http://wenku.baidu.com/view/9e599b68a98271fe910ef951.html2023-08-26 09:39:083
现有开关电源20V 4A 怎么设计电压电源可调呢
开关电源电压可以在一个范围之内调节的,要看你想怎么调,改变反馈电压就可以了。你这个在16--24V之间可调是可以的。2023-08-26 09:39:183
请教一个反激开关电源的设计 UC3843
变压器的设计主要考虑的是磁感应强度是否太大,高频下磁感应强度太大会提高铁耗。另一方面是励磁电流是否过大。但是,在反激拓扑中的励磁电流能量是直接传到副边的,就是要让励磁电流大一些,因此不用考虑后者,只用考虑前者就可以了。反激拓扑中的脉冲变压器应该看作互感更为合适。根据频率选择磁性材料,你的频率500kHz应该是3f3之类的,查一查手册就知道了。然后确定尺寸首先计算原边的磁链变化量,反激拓扑中的磁场是单向利用的,也就是说磁链变化量就是磁链幅值,用它来确定磁通最大值Bm。由法拉第电磁感应定律可以知道Psimax=Umax*Tonmax=16*2us=32uWbBmax=Phimax/S=Psimax/N1/AeBmax要远小于饱和磁感应强度Bsat以减小铁耗,在这里可以确定大致的N1*Ae,Ae为有效截面积然后计算励磁电流能量,因为励磁电流在开关管开通时是线性增长的,它的斜率是由原边自感应影响的,因此可以确定原边自感。如果你的设计输出功率较大的话,那么就要让L1小一点,也就是要提高le减小Ae(已经在确定Bmax时计算出来了)。le的提高自然是整个变压器体积的提升。开关管导通时,电流的变化率di/dt=U/L,考虑最坏的情况U最小10V让你的电流电压在一个周期的积分也就是功率稍微超出你的最大输出功率。这样就确定了L1也就是原边自感。L1=Pm*N1^2=ui*u0*Ae/le,其中ui为相对磁导率,u0为真空绝对磁导率,Ae为有效截面积,le为磁芯长度。在有气隙的情况下,这个式子就不是用了,一般磁芯会给出Pm,用Pm乘以匝数平方就可以计算自感了。原边自感确定后注意到L1=Pm*N1^2,如果你选的Pm比较小,也就是le大,体积大的话,匝数就可以少一些。相反如果体积小,匝数就多一些。自己平衡吧。我的解释也只是最简单的原理,肯定有很多漏洞,互相学习。2023-08-26 09:39:381
Sanjaya Maniktala著 王志强等译 Vz/Vor=1.4时,齐纳管钳位损耗最小
这是应该是经验得出的一个较佳值,就跟电流纹波率r=0.4一样,要求Vz>Vor,但也不能大太多2023-08-26 09:40:062
在开关电源设计中,我怎么知道什么地方用0603贴片电阻,什么地方用0805贴片电阻,什么地方用1206贴片电阻.
算一算通电时加在电阻上的功率,一般加在电阻上的功率要远小于电阻的功率范围(功率10倍以上时电阻基本能稳定在环境温度),加在电阻上功率太大会使电阻发热,阻值变化,甚至烧坏。另外,这三种封装的电阻尺寸不一样,若是手工焊接的话,建议用1206的。2023-08-26 09:40:392
由24V/4A,15V/0.6A,-15V/0.6A,5V/1A,组成4路输出的开关电源怎么设计,请教一下,谢谢
这个属于功率较小的电源了,应采用单端的正激变换器。推荐使用TL494+4N35作为主控电路,开关频率设置在100kHz左右,变压器磁芯可以使用厚型EE42或EE55,功率管使用两只IRFP460,将它们串联,组成双管正激。正激式变换器在市电输入情况下,关断的电压尖峰高达800V左右,如果只用一个功率管,会被击穿。如果使用双管正激,两个功率管只需各自分担400V左右的电压,比较安全。变压器的设计和计算比较复杂,建议去书店买本关于制作开关电源的书看看。2023-08-26 09:40:461
设计电源电路有什么比较经典的书籍么
2023-08-26 09:40:562
开关电源应该如何学起,或是有什么基本的电路分析方面的书籍。望路过的大哥大姐指点一二。谢谢。。
网上有很多教程2023-08-26 09:41:043
设计开关电源时,开关管的耐压(VDS)如何取值?
一楼正解2023-08-26 09:41:144
如何设计一个开关电源的输出电压和最大输出电流?
这种东西有现成的,可以去五金店器店去买,如果你自己非想自己设计一个呀,那需要好多的东西,比如说电阻电容,小一点的变压,最简单的办法就是,用一个小一点的变压器,按照你的需求,它的电压变化,你撑多大?电流最高输出是多少?去制作一个就可以了2023-08-26 09:41:211