开关电源电路
百燕之家 / 信息详情
crt显示器开关电源电路中用ka3842集成。测7脚12~14V是正常?开关变压次级无电到
7脚的典型电压应为15V,最高30V,维修时首先得看电路是否起震,如未起震应检查3、4脚外围电路,如已起震即检查稳压1、2脚外围电路和场效应管。
求12V直流升110V直流开关电源电路图
电流小可以用二极管和电容搭个倍压电路,一般书上都有介绍.
求72V电动车转12V开关电源电路
接一个电瓶就可以了
请问大神,这个开关电源电路图,到底是单端正激还是单端反激方式?
是单端正激,R8确实太小了,常见的都是K级别。其它的就不明白了
如何用示波表检修UC3842芯片组成的开关电源电路
我是先用外接16V电源至7脚,如果其它电路没问题,4脚就会震荡,6脚就有方波输出,然后用示波器查看,如果波形良好。调整频率后,撤掉外接电源,再查看波形,此时的波形如果不好,就是开关变压器绕制工艺造成。
各位开关电源高手能否帮我分析一下,我这个uc3842开关电源电路图?放到multisim上运行就出错,哪里错了呢
我想知道楼主最后怎么解决的
急,谁能给我一个较为经典的220V转16V开关电源电路图?配有原理说明为佳!
UC3842最常用,搜索就有了
请看下面开关电源电路图回答问题
双管正激。圆圈内是驱动变压器,驱动上面那个mos。两个二极管作用是提供复位通路(励磁电流复位)
请教专家分析开关电源电路图,请帮忙指点一下各个元件的作用,和参数的设置。谢谢
B1是整流桥,C1滤波,R4是启动电阻,Q1是开关管,R1是开关管的电流负反馈电阻,C3R5是开关管的震荡激励元件。
高频开关电源电路原理是什么?
开关电源的工作过程相当容易理解,在线性电源中,让功率晶体管工作在线性模式,与线性电源不同的是,PWM开关电源是让功率晶体管工作在导通和关断的状态,在这两种状态中,加在功率晶体管上的伏-安乘积是很小的(在导通时,电压低,电流大;关断时,电压高,电流小)/功率器件上的伏安乘积就是功率半导体器件上所产生的损耗。与线性电源相比,PWM开关电源更为有效的工作过程是通过“斩波”,即把输入的直流电压斩成幅值等于输入电压幅值的脉冲电压来实现的。脉冲的占空比由开关电源的控制器来调节。一旦输入电压被斩成交流方波,其幅值就可以通过变压器来升高或降低。通过增加变压器的二次绕组数就可以增加输出的电压组数。最后这些交流波形经过整流滤波后就得到直流输出电压。控制器的主要目的是保持输出电压稳定,其工作过程与线性形式的控制器很类似。也就是说控制器的功能块、电压参考和误差放大器,可以设计成与线性调节器相同。他们的不同之处在于,误差放大器的输出(误差电压)在驱动功率管之前要经过一个电压/脉冲宽度转换单元。
开关电源电路中两个串联电容分析问题?
C1、C2、C3及它们中间一两个电感(其实是绕在同一个磁芯上的)构成EMI滤波器(电磁干扰滤波器),主要是防止电网的高频脉冲对电源的干扰和减少开关电源本身的高频脉冲对电网的干扰。3844与最常见的3842引脚功能相同,8脚为芯片的5V基准电压输出脚,主要是用于给震荡电路的RC提供稳定的电压,8脚通过接到4脚的电阻(图中为R5)给4脚到地的电容(图中为C8)充电,充到一定电压的时候,4脚又把电容上的电放掉,由芯片内部的控制电路控制充放电循环,产生震荡。取样电压比较的基准是在芯片内部的,没有引出,为基准电压的一半(2.5V)。
开关电源电路原理图(工作原理与应用)
开关电源电路是一种常见的电源电路,其工作原理是利用开关管的导通和截止状态来控制电源输出的电压和电流。开关电源电路具有高效率、稳定性好、体积小、重量轻等优点,因此被广泛应用于电子设备、通信设备、仪器仪表等领域。下面我们来详细了解一下开关电源电路的工作原理和应用。开关电源电路的工作原理开关电源电路主要由变压器、整流电路、滤波电路、开关电路和控制电路组成。其中,变压器是将输入的交流电压变换成需要的直流电压,整流电路将交流电压转换成脉冲电压,滤波电路对脉冲电压进行滤波,开关电路控制输出电压和电流,控制电路对开关电路进行控制。开关电源电路的工作原理如下:1.输入电压经过变压器变换成需要的直流电压;2.整流电路将直流电压转换成脉冲电压;3.滤波电路对脉冲电压进行滤波,得到平滑的直流电压;4.开关电路控制输出电压和电流,将直流电压调整到需要的值;5.控制电路对开关电路进行控制,保证输出电压和电流的稳定性。开关电源电路的应用开关电源电路广泛应用于电子设备、通信设备、仪器仪表等领域。其应用主要有以下几个方面:1.电子设备:开关电源电路可以为电子设备提供稳定的电源,保证设备的正常运行。2.通信设备:开关电源电路可以为通信设备提供稳定的电源,保证通信设备的正常工作。3.仪器仪表:开关电源电路可以为仪器仪表提供稳定的电源,保证仪器仪表的精度和稳定性。4.太阳能电池板:开关电源电路可以将太阳能电池板输出的直流电压转换成需要的电压,为家庭、工业等领域提供清洁、可再生的能源。操作步骤1.根据需要选择合适的开关电源电路原理图;2.按照电路原理图连接电路,注意电路连接的正确性和稳定性;3.接通电源,调整开关电路,保证输出电压和电流的稳定性;4.测试电路的性能,检查电路的工作状态,保证电路的正常运行。
开关电源电路中反馈电路的作用?光耦817C的工作原理???
在一些实验室或高要求场合,为了实验人员的安全,一般将实验的输入电源采用1:1的工频变压器与市电进行隔离,这样一来,实验室实验人员无论碰到线路的哪一根线都不会有触电的危险,因为隔离电源与大地是没有连接的。在工业控制设备中,有时候要求两个系统之间的电源地线隔离,如隔离地线噪声、隔离高共模电压等,采用带变压器的直流变换器,将两个电源之间隔开,使他们相互独立。 在一般的隔离电源中,光耦隔离反馈是一种简单、低成本的方式。但对于光耦反馈的各种连接方式及其区别,目前尚未见到比较深入的研究。而且在很多场合下,由于对光耦的工作原理理解不够深入,光耦接法混乱,往往导致电路不能正常工作。本研究将详细分析光耦工作原理,并针对光耦反馈的几种典型接法加以对比研究。1 常见的几种连接方式及其工作原理 光电耦合器具有体积小、使用寿命长、工作温度范围宽、抗干扰性能强。无触点且输入与输出在电气上完全隔离等特点,因而在各种电子设备上得到广泛的应用。光电耦合器可用于隔离电路、负载接口及各种家用电器等电路中。 常用于反馈的光耦型号有TLP521、PC817等。这里以TLP521为例,介绍这类光耦的特性。 TLP521的原边相当于一个发光二极管,原边电流If越大,光强越强,副边三极管的电流Ic越大。副边三极管电流Ic与原边二极管电流If的比值称为光耦的电流放大系数,该系数随温度变化而变化,且受温度影响较大。 通常选择TL431结合TLP521进行反馈。这时,TL431的工作原理相当于一个内部基准为2.5 V的电压误差放大器,所以在其1脚与3脚之间,要接补偿网络。
我要找交流220伏输入输出直流24伏2A开关电源电路图和讲解分折故障文章?
这个好找,但是维修不一定容易。
急!急!跪求半桥式开关电源电路图!
各输出的电流? 半桥式开关电源电路图很多呀,电脑电源有很多就是半桥式的,功率也都是在300W左右的。还有很多的充电电路等。你可以自己查一下修改一下就可以啦。你把电流规格列出,我也可以帮忙。
液晶电视机开关电源电路基本原理
小功率开关电源是用集成电路作为开关元件,其它的有的是三极管。多数是用场效应管。三极管和场效应管需要IC驱动。
变频器奇特的开关电源电路图
你说的图我不明白,在变频论坛贴个图吧,http://www.chinaelec.org/bbs/forum-6-1.html
开关电源电路不能带负载?
将次级绕组接线对调下相位。如果还有问题请到大比特论坛问我,如果帮上了你的忙还望采纳答案!
在开关电源电路中电感是不是越大越好
你要哪种开关电源电路的?反激式、正激式还是全桥、半桥?要不你直接去大比特电子变压器论坛上搜一下“陶显芳老师的《开关电源设计技巧》”,就可以看到全部开关电源电路中滤波电感电容的大小计算了。要不你留个邮箱给我,我发给你也行。
变频空调开关电源电路原理-变频空调的功率模块的原理是什么?
大家在空调过程中可能会有 变频空调开关电源电路原理 的问题,今天就由我为大家从以下几个方面:变频空调的功率模块的原理是什么?、变频空调的工作原理、变频器开关电源工作原理来和大家一起看看变频空调开关电源电路原理的问题。 变频空调的功率模块的原理是什么? 区别就是压以及电控系统样。变频空调的压缩机采用直流电机,电控系统比较复杂,属于同步控制;交流变频空调的压缩机采用的是交流电机,电控系统相对简单一些,属于异步控制。直流变频空调比交流变频空调要省电20%~30%,在舒适性、静音、寿命、控制精度等方面直流变频要优于交流变频。1、直流变频技术原理:直流变频空调器的工作原理是把50Hz工频交流电源转换为直流电源,并送至功率模块主电路,功率模块也同样受微电脑控制,所不同的是模块所输出的是电压可变的直流电源,压缩机使用的是直流电机,所以直流变频空调器也可以称为全直流变速空调器。直流变频压缩机转子采用稀土永磁材料制作而成,其工作原理为:定子产生旋转磁场与转子永磁磁场直接作用,实现压缩机运转。可以通过改变送给电机的直流电压来改变电机的转速直流变频空调器没有逆变环节,在这方面比交流变频更加省电。特点:直流变频压缩机不存在定子旋转磁场对转子的电磁感应作用,克服了交流变频压缩机的电磁噪音与转子损耗,具有比交流变频压缩机效率高与噪音低特点,直流变频压缩机效率比交流变频压缩机高10%-30%,噪音低5分贝-10分贝。但是,直流变频空调的成本要高于交流变频空调。2、交流变频技术交流变频空调器的工作原理是:变频技术是通过变频器改变电源频率,从而改变压缩机的转速的一种技术。通过变频器先进行交流到直流的变换,再通过变频器进行直流到交流的变换,从而控制交流电机的转速。而对变频器的控制是通过传感器将室内温度信息传递给微电脑,输出一定频率变化的波形,控制变频器的频率。当室内急速降温或急速升温时,室内空调负荷加大,压缩机转速加快,制冷量按比例增加,相反,当室内空调负荷减少时,压缩机正常运转或减速。交流变频压缩机本质上仍是三相交流异步电动机,通过定、转子之间磁场的相互作用使转子旋转。但其特别的设计使得可以在较大范围内通过改变电源的频率和电压来改变电机的转速,因此称之为交流变频。特点:相对于定频空调而言,交流变频空调的效率比较高,噪音较低,控制灵敏。其成本比直流变频空调要低。 变频空调的功率模块的原理是什么? 这个问题一般的维修时答不上来的,你最好搜索一下,那个细节不明白再来提问,否则复制来的你是看不懂得。 变频空调的功率模块的原理是什么? 电整流后变为直流高压功率工作电压,该模块由另外可控的振荡电制,进行逆变工作,把直流高压电转变为可控的电压即稳定交流电压,其输出电源频率随环境温度变化而变化。从而使制冷压缩机制冷工况随之变化。也就达到耗电量的调整。 变频器开关电源工作原理 上电p1的300v经r1给c1充电,当c1上的电压达到uc3844的启动门限电,uc3844开始工作动开关管q1导通和关断,开关变压器各次级绕组开始有电压输出。为了降低r1的功耗,r1的阻值通常比较大(120k-150k),提供的电流只有2ma多一点,不足以维持uc3844连续工作。所以需要用一个专门的次级绕组n2的输出经d1整流c1滤波后给uc3844提供正常工作所需的电源,以维持uc3844正常工作。 变频器开关电源工作原理 开关电源的工作过程容易理解,在线性电,让晶体管工作在模式,与线性电源不同的是,PWM开关电源是让功率晶体管工作在导通和关断的状态,在这两种状态中,加在功率晶体管上的伏-安乘积是很小的(在导通时,电压低,电流大;关断时,电压高,电流小)/功率器件上的伏安乘积就是功率半导体器件上所产生的损耗。与线性电源相比,PWM开关电源更为有效的工作过程是通过“斩波”,即把输入的直流电压斩成幅值等于输入电压幅值的脉冲电压来实现的。脉冲的占空比由开关电源的控制器来调节。一旦输入电压被斩成交流方波,其幅值就可以通过变压器来升高或降低。通过增加变压器的二次绕组数就可以增加输出的电压值。最后这些交流波形经过整流滤波后就得到直流输出电压。控制器的主要目的是保持输出电压稳定,其工作过程与线性形式的控制器很类似。也就是说控制器的功能块、电压参考和误差放大器,可以设计成与线性调节器相同。他们的不同之处在于,误差放大器的输出(误差电压)在驱动功率管之前要经过一个电压/脉冲宽度转换单元。开关电源有两种主要的工作方式:正激式变换和升压式变换。尽管它们各部分的布置差别很小,但是工作过程相差很大,在特定的应用场合下各有优点。 变频器开关电源工作原理 开关电源就是电关器件(如晶体场效应管、可控硅闸流管),通过控制电路,使电子开关器件不停地“接通”和“关断”,让电子开关器件对输入电压进行脉冲调制,从而实现DC/AC、DC/DC电压变换,以及输出电压可调和自动稳压。搜索开关电源一般有三种工作模式:频率、脉冲宽度固定模式,频率固定、脉冲宽度可变模式,频率、脉冲宽度可变模式。前一种工作模式多用于DC/AC逆变电源,或DC/DC电压变换;后两种工作模式多用于开关稳压电源。另外,开关电源输出电压也有三种工作方式:直接输出电压方式、平均值输出电压方式、幅值输出电压方式。同样,前一种工作方式多用于DC/AC逆变电源,或DC/DC电压变换;后两种工作方式多用于开关稳压电源。根据开关器件在电路中连接的方式,目前比较广泛使用的开关电源,大体上可分为:串联式开关电源、并联式开关电源、变压器式开关电源等三大类。其中,变压器式开关电源(后面简称变压器开关电源)还可以进一步分成:推挽式、半桥式、全桥式等多种;根据变压器的激励和输出电压的相位,又可以分成:正激式、反激式、单激式和双激式等多种;如果从用途上来分,还可以分成更多种类。 变频空调的工作原理 变频空调中都装频器,这个变频控制器是如何工作的呢?国内压220V,频率50Hz的电流经整流滤波后得到310V左右的直流电,此直流电经过逆变后,就可以得到用以控制压缩机运转的变频电源,这就能将50赫兹的电网频率转变为30-130赫兹,变频空调就是一种使用变频压缩机和模糊控制技术的空调能根据室内气温的变化,调节制冷速度。一个15平方米的房间,变频空调比定频式调温速度快6~10分钟。达到设定温度后,变频空调又能以仅为定频空调10%的功率低速运转,以调节温度细微损耗,维持恒温状态。变频式空调器一般带有微机(电脑)控制。它检测室内外信号如温度(室内外温、蒸发器温、冷凝器温、吸气管口温、膨胀阀出入口温、变频开头散热片温等),风机转速,电动机电流等。并由微机发出风机、压缩 机运转速、制冷剂流量、阔的切换、安全保护等信号。此类机装有电子膨胀间节流。它随微处理器发出的信号,随时改变制冷剂流量,故它的效率比普遍使用毛细管节流方式的高。同时在制冷方式中,无化霜烦恼(化霜不停机)。因此空调在制热时不会像普通机在除霜倒泵逆转时,吹出冷风使室温下降。变频空调还能在142-270伏范围的电网电压正常使用,根据温度控制指令,在压缩机连续运行时会改变频率,当产冷量要求大时则高速运转,反之低速运转。由于变频机无频繁的启动大电流冲击,且一直工作在低速上,又第一次只半小时就能达到设定值,故节电明显。即制冷(热)的功耗之比效率就高得多了。“变频”采用了比较先进的技术,启动时电压较小,可在低电压和低温度条件下启动,这对于某些地区由于电压不稳定或冬天室内温度较低而空调难以启动的情况,有一定的改善作用。由于实现了压缩机的无级变速,它也可以适应更大面积的制冷制热需求。所谓的“变频空调”是与传统的“定频空调”相比较而产生的概念。众所周知,我国的电网电压为220伏、50赫兹,在这种条件下工作的空调称之为“定频空调”。由于供电频率不能改变,传统的定频空调的压缩机转速基本不变,依靠其不断地“开、停”压缩机来调整室内温度,其一开一停之间容易造成室温忽冷忽热,并消耗较多电能。而与之相比,“变频空调”变频器改变压缩机供电频率,调节压缩机转速。依靠压缩机转速的快慢达到控制室温的目的,室温波动小、电能消耗少,其舒适度大大提高。而运用变频控制技术的变频空调,可根据环境温度自动选择制热、制冷和除湿运转方式,使居室在短时间内迅速达到所需要的温度并在低转速、低能耗状态下以较小的温差波动,实现了快速、节能和舒适控温效果。供电频率高,压缩机转速快,空调器制冷(热)量就大;而当供电频率较低时,空调器制冷(热)量就小。这就是所谓“变频”的原理。变频空调的核心是它的变频器,变频器是20世纪80年代问世的一种高新技术,它通过对电流的转换来实现电动机运转频率的自动调节,把50Hz的固定电网频率改为30至130Hz的变化频率,使空调完成了一个新革命。同时,还使电源电压范围达到142V至270V,彻底解决了由于电网电压的不稳定而造成空调器不能正常工作的难题。变频空调每次开始使用时,通常是让空调以最大功率、最大风量进行制热或制冷,迅速接近所设定的温度。由于变频空调通过提高压缩机工作频率的方式,增大了在低温时的制热能力,最大制热量可达到同级别空调器的1.5倍,低温下仍能保持良好的制热效果。此外,一般的分体机只有四档风速可供调节,而变频空调器的室内风机自动运行时,转速会随压缩机的工作频率在12档风速范围内变化,由于风机的转速与空调器的能力配合较为合理,实现了低噪音的宁静运行。当空调高功率运转,迅速接近所设定的温度后,压缩机便在低转速、低能耗状态运转,仅以所需的功率维持设定的温度。这样不但温度稳定,还避免了压缩机频繁地开开停停所造成的对寿命的衰减,而且耗电量大大下降,实现了高效节能。 变频空调的工作原理 您好!诚信家电制修解答!变频空调的工作原理大致上三部分:整流、滤ipm逆变,其电路分别有:强电电路、开关电源电路、电压检测电路、电流检测电路、温度传感器电路、ee方层次电路、电源监视器电路、晶振电路、功率模块驱动电路、通讯电路、继电器控制电路、整流滤波电路、主芯片控制电路。直流变频也就是说这个空调的压缩机使用的是直流电;交流变频是说这个空调的压缩机使用的是交流电。希望我的回答能够帮助到你,谢谢! 变频空调的工作原理 我来回。其实何为变频,我频为50HZ。在50HZ以下变化的为变频。而空调最费部件就是压缩机了过改变压缩机的工作频率,而达到空调的省电。很多时候空调是不必要工作在全负荷的,通过电路和传感器的智能设别来改变压缩机电机的频率可以达到省电的效果。
怎样才能比较快地设计出开关电源电路
让别人给你设计
开关电源电路设计秘笈之如何选择正确的工作频率
本文将就开关电源设计中如何正确的选择工作频率分享设计技巧。为您的电源选择正确的工作频率为您的电源选择最佳的工作频率是一个复杂的权衡过程,其中包括尺寸、效率以及成本。通常来说,低频率设计往往是最为高效的,但是其尺寸最大且成本也最高。虽然调高频率可以缩小尺寸并降低成本,但会增加电路损耗。接下来,我们使用一款简单的降压电源来描述这些权衡过程。我们以滤波器组件作为开始。这些组件占据了电源体积的大部分,同时滤波器的尺寸同工作频率成反比关系。另一方面,每一次开关转换都会伴有能量损耗;工作频率越高,开关损耗就越高,同时效率也就越低;其次,较高的频率运行通常意味着可以使用较小的组件值。因此,更高频率运行能够带来极大的成本节约。图1.1显示的是降压电源频率与体积的关系。频率为100kHz时,电感占据了电源体积的大部分(深蓝色区域)。如果我们假设电感体积与其能量相关,那么其体积缩小将与频率成正比例关系。由于某种频率下电感的磁芯损耗会极大增高并限制尺寸的进一步缩小,因此在此情况下上述假设就不容乐观了。如果该设计使用陶瓷电容,那么输出电容体积(褐色区域)便会随频率缩小,即所需电容降低。另一方面,之所以通常会选用输入电容,是因为其具有纹波电流额定值。该额定值不会随频率而明显变化,因此其体积(黄色区域)往往可以保持恒定。另外,电源的半导体部分不会随频率而变化。这样,由于低频开关,无源器件会占据电源体积的大部分。当我们转到高工作频率时,半导体(即半导体体积,淡蓝色区域)开始占据较大的空间比例。该曲线图显示半导体体积本质上并未随频率而变化,而这一关系可能过于简单化。与半导体相关的损耗主要有两类:传导损耗和开关损耗。同步降压转换器中的传导损耗与MOSFET的裸片面积成反比关系。MOSFET面积越大,其电阻和传导损耗就越低。开关损耗与MOSFET开关的速度以及MOSFET具有多少输入和输出电容有关。这些都与器件尺寸的大小相关。大体积器件具有较慢的开关速度以及更多的电容。图1.2显示了两种不同工作频率(F)的关系。传导损耗(Pcon)与工作频率无关,而开关损耗(PswF1和PswF2)与工作频率成正比例关系。因此更高的工作频率(PswF2)会产生更高的开关损耗。当开关损耗和传导损耗相等时,每种工作频率的总损耗最低。另外,随着工作频率提高,总损耗将更高。但是,在更高的工作频率下,最佳裸片面积较小,从而带来成本节约。实际上,在低频率下,通过调整裸片面积来最小化损耗会带来极高成本的设计。但是,转到更高工作频率后,我们就可以优化裸片面积来降低损耗,从而缩小电源的半导体体积。这样做的缺点是:如果我们不改进半导体技术,那么电源效率将会降低。如前所述,更高的工作频率可缩小电感体积,所需的内层芯板会减少。更高频率还可降低对于输出电容的要求。有了陶瓷电容,我们就可以使用更低的电容值或更少的电容。这有助于缩小半导体裸片面积,进而降低成本。
有图 请各位老师在解释下 自激式开关电源电路。
建议你参考间歇振荡器的工作原理;http://wenku.baidu.com/view/48aa8821aaea998fcc220e7c.htmlhttp://wenku.baidu.com/view/0cb4ff05a6c30c2259019ea8.html就会明白电容C1的作用与工作方式。
矿用80开关电源电路原理图连接的
这就是矿用QBZ-80开关的电气原理图。如果你要外接启动和停止按钮时,把启动按键接1和2线,停止按钮接2和9线。如果不需外接控制,只要把2和9线直接短接,用开关本身的按钮控制启停。希望对你有所帮助。
矿用80开关电源电路原理图
去我百度空间看吧,有QBZ-80开关
CQ0765开关电源电路原理图
学习了,就是看不清.
开关电源电路设计
就 怎样
开关电源电路设计的秘笈之如何驾驭噪声电源
无噪声电源并非是偶然设计出来的。一种好的电源布局是在设计时最大程度的缩短实验时间。花费数分钟甚至是数小时的时间来仔细查看电源布局,便可以省去数天的故障排查时间。 图2.1显示的是电源内部一些主要噪声敏感型电路的结构图。将输出电压与一个参考电压进行比较以生成一个误差信号,然后再将该信号与一个斜坡相比较,以生成一个用于驱动功率级的PWM(脉宽调制)信号。 电源噪声主要来自三个地方:误差放大器输入与输出、参考电压以及斜坡。对这些节点进行精心的电气设计和物理设计有助于最大程度地缩短故障诊断时间。一般而言,噪声会与这些低电平电路电容耦合。一种卓越的设计可以确保这些低电平电路的紧密布局,并远离所有开关波形。接地层也具有屏蔽作用。 误差放大器输入端可能是电源中最为敏感的节点,因为其通常具有最多的连接组件。如果将其与该级的极高增益和高阻抗相结合,后患无穷。在布局过程中,您必须最小化节点长度,并尽可能近地将反馈和输入组件靠近误差放大器放置。如果反馈网络中存在高频积分电容,那么您必须将其靠近放大器放置,其他反馈组件紧跟其后。并且,串联电阻-电容也可能形成补偿网络。最理想的结果是,将电阻靠近误差放大器输入端放置,这样,如果高频信号注入该电阻-电容节点时,那么该高频信号就不得不承受较高的电阻阻抗—而电容对高频信号的阻抗则很小。 斜坡是另一个潜在的会带来噪声问题的地方。斜坡通常由电容器充电(电压模式)生成,或由来自于电源开关电流的采样(电流模式)生成。通常,电压模式斜坡并不是一个问题,因为电容对高频注入信号的阻抗很小。而电流斜坡却较为棘手,因为存在了上升边沿峰值、相对较小的斜坡振幅以及功率级寄生效应。 图2.2显示了电流斜坡存在的一些问题。第一幅图显示了上升边沿峰值和随后产生的电流斜坡。比较器(根据其不同速度)具有两个电压结点(potentialtrippoints),结果是无序控制运行,听起来更像是煎熏肉的声音。 利用控制IC中的上升边沿消隐可以很好地解决这一问题,其忽略了电流波形的最初部分。波形的高频滤波也有助于解决该问题。同样也要将电容器尽可能近地靠近控制IC放置。正如这两种波形表现出来的那样,另一种常见的问题是次谐波振荡。这种宽-窄驱动波形表现为非充分斜率补偿。向当前斜坡增加更多的电压斜坡便可以解决该问题。 尽管您已经相当仔细地设计了电源布局,但是您的原型电源还是存在噪声。这该怎么办呢?首先,要确定消除不稳定因素的环路响应不存在问题。有趣的是,噪声问题可能会看起来像是电源交叉频率上的不稳定。但真正的情况是该环路正以其最快响应速度纠出注入误差。同样,最佳方法是识别出噪声正被注入下列三个地方之一:误差放大器、参考电压或斜坡。您只需分步解决便可! 第一步是检查节点,看斜坡中是否存在明显的非线性,或者误差放大器输出中是否存在高频率变化。如果检查后没有发现任何问题,那么就将误差放大器从电路中取出,并用一个清洁的电压源加以代替。这样您应该就能够改变该电压源的输出,以平稳地改变电源输出。如果这样做奏效的话,那么您就已经将问题范围缩小至参考电压和误差放大器了。 有时,控制IC中的参考电压易受开关波形的影响。利用添加更多(或适当)的旁路可能会使这种状况得到改善。另外,使用栅极驱动电阻来减缓开关波形也可能会有助于解决这一问题。如果问题出在误差放大器上,那么降低补偿组件阻抗会有所帮助,因为这样降低了注入信号的振幅。如果所有这些方法都不奏效,那么就从印刷电路板将误差放大器节点去除。
开关电源电路图详解,电路图设计注意事项
开关电源,或许您对于这一名词听说的很少,但是您对您的手机充电器或者笔记本电脑一定不陌生,他们中就有开关电源,而开关电源的电路图更是对于开关电源来说还要重要。下面就让我们给您讲解一下开关电源电路图的详解以及设计开关电源电路图时的注意事项吧。开关电源电路图详解一、主电路从交流电网输入、直流输出的全过程,包括:1、输入滤波器:其作用是将电网存在的杂波过滤,同时也阻碍本机产生的杂波反馈到公共电网。2、整流与滤波:将电网交流电源直接整流为较平滑的直流电,以供下一级变换。3、逆变:将整流后的直流电变为高频交流电,这是高频开关电源的核心部分,频率越高,体积、重量与输出功率之比越小。4、输出整流与滤波:根据负载需要,提供稳定可靠的直流电源。二、控制电路:一方面从输出端取样,经与设定标准进行比较,然后去控制逆变器,改变其频率或脉宽,达到输出稳定,另一方面,根据测试电路提供的资料,经保护电路鉴别,提供控制电路对整机进行各种保护措施。三、检测电路:除了提供保护电路中正在运行中各种参数外,还提供各种显示仪表资料。四、辅助电源:提供所有单一电路的不同要求电源。开关电源电路图设计时的注意事项1、布线布线的设计要求在开关电源设计中是非常严格的,要做好才能过关。要是设计师在设计前期没处理好布线的工作,那么以后的用电会存在很大的安全隐患。所以在此2、元器布局元器设计也有非常重要讲究的,在设计的时候一定要遵循物理设计原理,不要凭自己的想法去改变元器的位置,以防发生短路的意外。此外,设计师在购买元器的时候也要自行检查产品的质量。3、参数在开关电源设计里面,我们一定要明白里面的每一个构造细节,特别是记清参数,这样才能给日后的使用具体说明。详细的参数也方便后期对开关电源的测试。4、检查设计完每个开关电源后还要经过严格检查才能生产,只有通过检查才能确定开关电源的可用性跟适用性,从而进行开关电源的定价。在检查的时候,首先从电路开始,检测开关电源的真实工作环境,在什么样的环境下工作运行最合适,避免在某些环境下发生电路意外,安全是我们首先要关心的,所以我们需要对开关电源进行仔细检查。5、选择合适的功率为了能使开关电源的寿命更久,我建议选择的时候要选用30%输出功率额定的机种。倘若系统需要一个100W的电源,那么建议就要挑选大于140W输出功率额定的机种,以此类推才能有效提高电源的寿命。现在对于开关电源的电路图有了一定的了解了吧,希望您以后如果在遇到这个问题的时候不至于跟看到了天书一样无从下手。
什么叫RCC开关电源?最简单的RCC开关电源电路
此电路也叫做自激式反激转换器。 RCC电路不需要外部时钟的控制,由开关变压器和开关管就可以产生振荡的原因,使线路的结构非常的简单,这样就致使成本低廉。所以可以用之中电路来做出地价格的电源供应器。而市场上的小型电源供应器也是采用RCC来设计的。RCC电路的主要优缺点如下:1、电路结构简单,价格成本低。2、自激式振荡,不需要设计辅助电源。3、随着输出电压或电流的变化,启动后,频率周期变化很大。4、转换的效率不高,不能做成大功率电源。5、噪声主要集中在低频段。
请帮我简述一下开关电源电路中开关变压器的工作原理?
开关电源中使用的一般为高频变压器。高频脉冲通过变压器原边线圈,在副边感应出电动势。经过整流、滤波就可以供给负载了。为了提高输出电压的稳定度,通常会有一个反馈线圈,来控制输入原边的脉冲电流占空比。
开关电源电路分析
弱弱地问一句,请问您的电路是应用到哪里的啊?哪里可以找到这个完整的电路呢
求教:开关电源电路
关注、、、、、、、、、、
求大师帮我分析一下这个开关电源电路原理,特别是两只三极管的作用,以及电路是怎样翻转的,越详细越好,
电路中V2、V3主要是过压、欠压保护作用,V1是个MOS开关管。前程达问的分析。
求大神看一下这个开关电源电路
给了我们对家乡的芦苇为人民创造价值的赞美,为人民能带来财富的线索
反激式开关电源电路
今天小编呢要做一次物理老师了,相信很多的女生在上学的时候针对线路的问题都是很苦恼的,为什么呢因为看见那些线线缠绕着就绕的眼晕,背那些它看见自己认识的自己看见他不认识的公式就头疼,今天小编呢就来给大家说一下不头疼的电路知识叫做反激式开关电源电路。 反激式开关电源电路简介 反激式开关电源是指使用反激高频变压器隔离输入输出回路的开关电源。“反激”指的是在开关管接通的情况下,当输入为高电平时输出线路中串联的电感为放电状态;相反,在开关管断开的情况下,当输入为高电平时输出线路中的串联的电感为充电状态。与之相对的是“正激”式开关电源,当输入为高电平时输出线路中串联的电感为充电状态,相反当输入为高电平时输出线路中的串联的电感为放电状态,以此驱动负载。 反激式开关电源工作模式 反激式开关电源的电路结构比较简单,在小功率电路中应用非常广泛,在15kw光伏逆变器中用到的两个电源都是这种结构。反激式开关电源有三种工作模式:连续模式、非连续模式以及临界模式。在非连续工作模式中,功率管零电流开通,开通损耗小,而副边二极管零电流关断,可以不考虑反向恢复问题,对EMC会有一些好处。 看到小编为大家详细的介绍了这一种反激式开关电源电路的原理简介,对它是不是不陌生了呢,那么小编这一次教学就是非常的成功的。当然老师也是靠学生的能力来决定教学质量的好坏的,大家都是蛮聪明的。今天的教学呢就到这里希望大家再接再厉。
开关电源电路是怎样的工作原理?
找个图纸
开关电源电路及原理是什么?
开关电源就是利用电子开关器件(如晶体管、场效应管、可控硅闸流管等),通过控制电路,使电子开关器件不停地“接通”和“关断”,让电子开关器件对输入电压进行脉冲调制,从而实现DC/AC、DC/DC电压变换,以及输出电压可调和自动稳压。开关电源一般有三种工作模式:频率、脉冲宽度固定模式,频率固定、脉冲宽度可变模式,频率、脉冲宽度可变模式。前一种工作模式多用于DC/AC逆变电源,或DC/DC电压变换;后两种工作模式多用于开关稳压电源。另外,开关电源输出电压也有三种工作方式:直接输出电压方式、平均值输出电压方式、幅值输出电压方式。同样,前一种工作方式多用于DC/AC逆变电源,或DC/DC电压变换;后两种工作方式多用于开关稳压电源。根据开关器件在电路中连接的方式,开关电源,大体上可分为:串联式开关电源、并联式开关电源、变压器式开关电源等三大类。其中,变压器式开关电源(后面简称变压器开关电源)还可以进一步分成:推挽式、半桥式、全桥式等多种;根据变压器的激励和输出电压的相位,又可以分成:正激式、反激式、单激式和双激式等多种;如果从用途上来分,还可以分成更多种类。工作原理开关电源的工作过程相当容易理解,在线性电源中,让功率晶体管工作在线性模式,与线性电源不同的是,PWM开关电源是让功率晶体管工作在导通和关断的状态;在这两种状态中,加在功率晶体管上的伏-安乘积是很小的(在导通时,电压低,电流大;关断时,电压高,电流小)/功率器件上的伏安乘积就是功率半导体器件上所产生的损耗。与线性电源相比,PWM开关电源更为有效的工作过程是通过“斩波”,即把输入的直流电压斩成幅值等于输入电压幅值的脉冲电压来实现的。脉冲的占空比由开关电源的控制器来调节。一旦输入电压被斩成交流方波,其幅值就可以通过变压器来升高或降低。通过增加变压器的二次绕组数就可以增加输出的电压值。最后这些交流波形经过整流滤波后就得到直流输出电压。控制器的主要目的是保持输出电压稳定,其工作过程与线性形式的控制器很类似。也就是说控制器的功能块、电压参考和误差放大器,可以设计成与线性调节器相同。他们的不同之处在于,误差放大器的输出(误差电压)在驱动功率管之前要经过一个电压/脉冲宽度转换单元。开关电源有两种主要的工作方式:正激式变换和升压式变换。尽管它们各部分的布置差别很小,但是工作过程相差很大,在特定的应用场合下各有优点。与线性电源的比较与传统的线性电源相比,开关电源的优势在于效率高(此处的效率可以简单的看作输入功率与输出功率之比),加之开关晶体管工作于开关状态,损耗较小,发热较低,不需要体积/重量非常大的散热器,因此体积较小、重量较轻。但开关电源工作时,由于频率较高,会对电网及周围设备造成干扰,因此,必须妥善的处理此问题。线性电源的优势在于结构相对简单,可靠性相对较高,电流纹波率可以很容易的做到比较低,维修也较为方便。实际上,现代的电路中,开关电源电路和线性电源电路在大多数情况下,是组合使用的——使用开关电源进行初步的变换,给纹波、精度要求不高的电路使用;同时,使用低压差稳压器(LDO)获取精密的、低纹波(噪声)的电压供诸如运算放大器(OP-AMP),模数转换器(A/D Converter)使用。
开关电源电路是怎样的工作原理
开关电源的工作过程相当容易理解,在线性电源中,让功率晶体管工作在线性模式,与线性电源不同的是,pwm开关电源是让功率晶体管工作在导通和关断的状态,在这两种状态中,加在功率晶体管上的伏-安乘积是很小的(在导通时,电压低,电流大;关断时,电压高,电流小)/功率器件上的伏安乘积就是功率半导体器件上所产生的损耗。与线性电源相比,pwm开关电源更为有效的工作过程是通过“斩波”,即把输入的直流电压斩成幅值等于输入电压幅值的脉冲电压来实现的。脉冲的占空比由开关电源的控制器来调节。一旦输入电压被斩成交流方波,其幅值就可以通过变压器来升高或降低。通过增加变压器的二次绕组数就可以增加输出的电压组数。最后这些交流波形经过整流滤波后就得到直流输出电压。控制器的主要目的是保持输出电压稳定,其工作过程与线性形式的控制器很类似。也就是说控制器的功能块、电压参考和误差放大器,可以设计成与线性调节器相同。他们的不同之处在于,误差放大器的输出(误差电压)在驱动功率管之前要经过一个电压/脉冲宽度转换单元。
开关变压器的工作原理以及开关电源电路的原理是什么
在这里的三言两语没法说清楚。建议购买“精通开关电源设计”(王志强译)或网上下载来看看。
开关电源电路及原理是什么?
顾名思义,开关电源就是利用电子开关器件(如晶体管、场效应管、可控硅闸流管等),通过控制电路,使电子开关器件不停地“接通”和“关断”,让电子开关器件对输入电压进行脉冲调制,从而实现DC/AC、DC/DC电压变换,以及输出电压可调和自动稳压。开关电源一般有三种工作模式:频率、脉冲宽度固定模式,频率固定、脉冲宽度可变模式,频率、脉冲宽度可变模式。前一种工作模式多用于DC/AC逆变电源,或DC/DC电压变换;后两种工作模式多用于开关稳压电源。另外,开关电源输出电压也有三种工作方式:直接输出电压方式、平均值输出电压方式、幅值输出电压方式。同样,前一种工作方式多用于DC/AC逆变电源,或DC/DC电压变换;后两种工作方式多用于开关稳压电源。根据开关器件在电路中连接的方式,开关电源,大体上可分为:串联式开关电源、并联式开关电源、变压器式开关电源等三大类。其中,变压器式开关电源(后面简称变压器开关电源)还可以进一步分成:推挽式、半桥式、全桥式等多种;根据变压器的激励和输出电压的相位,又可以分成:正激式、反激式、单激式和双激式等多种;如果从用途上来分,还可以分成更多种类。工作原理开关电源的工作过程相当容易理解,在线性电源中,让功率晶体管工作在线性模式,与线性电源不同的是,PWM开关电源是让功率晶体管工作在导通和关断的状态;在这两种状态中,加在功率晶体管上的伏-安乘积是很小的(在导通时,电压低,电流大;关断时,电压高,电流小)/功率器件上的伏安乘积就是功率半导体器件上所产生的损耗。与线性电源相比,PWM开关电源更为有效的工作过程是通过“斩波”,即把输入的直流电压斩成幅值等于输入电压幅值的脉冲电压来实现的。与线性电源的比较与传统的线性电源相比,开关电源的优势在于效率高(此处的效率可以简单的看作输入功率与输出功率之比),加之开关晶体管工作于开关状态,损耗较小,发热较低,不需要体积/重量非常大的散热器,因此体积较小、重量较轻。但开关电源工作时,由于频率较高,会对电网及周围设备造成干扰,因此,必须妥善的处理此问题。线性电源的优势在于结构相对简单,可靠性相对较高,电流纹波率可以很容易的做到比较低,维修也较为方便。实际上,现代的电路中,开关电源电路和线性电源电路在大多数情况下,是组合使用的——使用开关电源进行初步的变换,给纹波、精度要求不高的电路使用;同时,使用低压差稳压器(LDO)获取精密的、低纹波(噪声)的电压供诸如运算放大器(OP-AMP),模数转换器(A/D Converter)使用。以上内容参考:百度百科-开关电源
为什么正激式开关电源电路只能降压,而反激式既可降压又可升压?
只要改变变压器的匝数比,正激的一样升压。
为什么正激式开关电源电路只能降压,而反激式既可降压又可升压?
架构不一样啊,正激的开关电源的变压器是个纯脆的变压器,不具备能量的存储,需要在输出加个能量存储的电感,关键就是这个能量存储的电感,超过200V的就不好做了。
开关电源电路设计如果功率不够,会有什么结果?
说多了你也听不懂,你想让他告诉你什么?某个芯片或元件选择有问题?把你的原理图传上来看看,我告诉你什么问题
开关电源电路设计秘笈之如何选择正确的工作频率
本文将就开关电源设计中如何正确的选择工作频率分享设计技巧。为您的电源选择正确的工作频率为您的电源选择最佳的工作频率是一个复杂的权衡过程,其中包括尺寸、效率以及成本。通常来说,低频率设计往往是最为高效的,但是其尺寸最大且成本也最高。虽然调高频率可以缩小尺寸并降低成本,但会增加电路损耗。接下来,我们使用一款简单的降压电源来描述这些权衡过程。我们以滤波器组件作为开始。这些组件占据了电源体积的大部分,同时滤波器的尺寸同工作频率成反比关系。另一方面,每一次开关转换都会伴有能量损耗;工作频率越高,开关损耗就越高,同时效率也就越低;其次,较高的频率运行通常意味着可以使用较小的组件值。因此,更高频率运行能够带来极大的成本节约。图1.1显示的是降压电源频率与体积的关系。频率为100kHz时,电感占据了电源体积的大部分(深蓝色区域)。如果我们假设电感体积与其能量相关,那么其体积缩小将与频率成正比例关系。由于某种频率下电感的磁芯损耗会极大增高并限制尺寸的进一步缩小,因此在此情况下上述假设就不容乐观了。如果该设计使用陶瓷电容,那么输出电容体积(褐色区域)便会随频率缩小,即所需电容降低。另一方面,之所以通常会选用输入电容,是因为其具有纹波电流额定值。该额定值不会随频率而明显变化,因此其体积(黄色区域)往往可以保持恒定。另外,电源的半导体部分不会随频率而变化。这样,由于低频开关,无源器件会占据电源体积的大部分。当我们转到高工作频率时,半导体(即半导体体积,淡蓝色区域)开始占据较大的空间比例。该曲线图显示半导体体积本质上并未随频率而变化,而这一关系可能过于简单化。与半导体相关的损耗主要有两类:传导损耗和开关损耗。同步降压转换器中的传导损耗与MOSFET的裸片面积成反比关系。MOSFET面积越大,其电阻和传导损耗就越低。开关损耗与MOSFET开关的速度以及MOSFET具有多少输入和输出电容有关。这些都与器件尺寸的大小相关。大体积器件具有较慢的开关速度以及更多的电容。图1.2显示了两种不同工作频率(F)的关系。传导损耗(Pcon)与工作频率无关,而开关损耗(PswF1和PswF2)与工作频率成正比例关系。因此更高的工作频率(PswF2)会产生更高的开关损耗。当开关损耗和传导损耗相等时,每种工作频率的总损耗最低。另外,随着工作频率提高,总损耗将更高。但是,在更高的工作频率下,最佳裸片面积较小,从而带来成本节约。实际上,在低频率下,通过调整裸片面积来最小化损耗会带来极高成本的设计。但是,转到更高工作频率后,我们就可以优化裸片面积来降低损耗,从而缩小电源的半导体体积。这样做的缺点是:如果我们不改进半导体技术,那么电源效率将会降低。如前所述,更高的工作频率可缩小电感体积,所需的内层芯板会减少。更高频率还可降低对于输出电容的要求。有了陶瓷电容,我们就可以使用更低的电容值或更少的电容。这有助于缩小半导体裸片面积,进而降低成本。
高频开关电源电路原理是什么?
开关电源的工作过程相当容易理解,在线性电源中,让功率晶体管工作在线性模式,与线性电源不同的是,PWM开关电源是让功率晶体管工作在导通和关断的状态,在这两种状态中,加在功率晶体管上的伏-安乘积是很小的(在导通时,电压低,电流大;关断时,电压高,电流小)/功率器件上的伏安乘积就是功率半导体器件上所产生的损耗。与线性电源相比,PWM开关电源更为有效的工作过程是通过“斩波”,即把输入的直流电压斩成幅值等于输入电压幅值的脉冲电压来实现的。脉冲的占空比由开关电源的控制器来调节。一旦输入电压被斩成交流方波,其幅值就可以通过变压器来升高或降低。通过增加变压器的二次绕组数就可以增加输出的电压组数。最后这些交流波形经过整流滤波后就得到直流输出电压。控制器的主要目的是保持输出电压稳定,其工作过程与线性形式的控制器很类似。也就是说控制器的功能块、电压参考和误差放大器,可以设计成与线性调节器相同。他们的不同之处在于,误差放大器的输出(误差电压)在驱动功率管之前要经过一个电压/脉冲宽度转换单元。
高频开关电源电路原理
分类: 教育/科学 >> 科学技术 >> 工程技术科学 问题描述: 急,在线等 解析: 一、主电路 从交流电网输入、直流输出的全过程,包括: 1、输入滤波器:其作用是将电网存在的杂波过滤,同时也阻碍本机产生的杂波反馈到公共电网。2、整流与滤波:将电网交流电源直接整流为较平滑的直流电,以供下一级变换。 3、逆变:将整流后的直流电变为高频交流电,这是高频开关电源的核心部分,频率越高,体积、重量与输出功率之比越小。 4、输出整流与滤波:根据负载需要,提供稳定可靠的直流电源。 二、控制电路 一方面从输出端取样,经与设定标准进行比较,然后去控制逆变器,改变其频率或脉宽,达到输出稳定,另一方面,根据测试电路提供的资料,经保护电路鉴别,提供控制电路对整机进行各种保护措施。 三、检测电路 除了提供保护电路中正在运行中各种参数外,还提供各种显示仪表资料。 四、辅助电源 提供所有单一电路的不同要求电源。 开关控制稳压原理 开关K以一定的时间间隔重复地接通和断开,在开关K接通时,输入电源E通过开关K和滤波电路提供给负载RL,在整个开关接通期间,电源E向负载提供能量;当开关K断开时,输入电源E便中断了能量的提供。可见,输入电源向负载提供能量是断续的,为使负载能得到连续的能量提供,开关稳压电源必须要有一套储能装置,在开关接通时将一部份能量储存起来,在开关断开时,向负载释放。图中,由电感L、电容C2和二极管D组成的电路,就具有这种功能。电感L用以储存能量,在开关断开时,储存在电感L中的能量通过二极管D释放给负载,使负载得到连续而稳定的能量,因二极管D使负载电流连续不断,所以称为续流二极管。在AB间的电压平均值EAB可用下式表示: EAB=TON/T*E 式中TON为开关每次接通的时间,T为开关通断的工作周期(即开关接通时间TON和关断时间TOFF之和)。 由式可知,改变开关接通时间和工作周期的比例,AB间电压的平均值也随之改变,因此,随着负载及输入电源电压的变化自动调整TON和T的比例便能使输出电压V0维持不变。改变接通时间TON和工作周期比例亦即改变脉冲的占空比,这种方法称为“时间比率控制”(Time Ratio Control,缩写为TRC)。 按TRC控制原理,有三种方式: 一、脉冲宽度调制(Pulse Width Modulation,缩写为PWM) 开关周期恒定,通过改变脉冲宽度来改变占空比的方式。 二、脉冲频率调制(Pulse Frequency Modulation,缩写为PFM) 导通脉冲宽度恒定,通过改变开关工作频率来改变占空比的方式。 三、混合调制 导通脉冲宽度和开关工作频率均不固定,彼此都能改变的方式,它是以上二种方式的混合。
明纬开关电源电路图
铭纬我经常去的呢 广州黄村那个
什么是开关电源电路图电源该维修哪里
因为多数的业主购买的房屋都是毛坯房。所以在房子下来装修的时候,最先要做的就是水电的改造。水电的改造不仅是第一步,也是非常关键的一部,关系的后期入住的安全和舒适度,电路的改造需要明确的出具一份电源改造图纸,以便于工人的详细具体施工。那什么是开关电源电路图呢?下面小编带大家了解一下。一.什么是开关电源电路图?1、开关电源是利用现代电力电子技术,控制开关管开通和关断的时间比率,维持稳定输出电压的一种电源,开关电源一般由脉冲宽度调制控制IC和MOSFET构成。开关电源和线性电源相比,二者的成本都随着输出功率的增加而增长,但二者增长速率各异。2、普通的电源一般是线性电源,线性电源,是指调整管工作在线性状态下的电源,开关电源是一种比较新型的电源。它工作效率较高,重量轻,可升、降压,输出功率大等优点。开关电源高频化是其发展的方向,高频化使开关电源小型化,并使开关电源进入更广泛的应用领域。另外开关电源的发展与应用在节约能源、节约资源及保护环境方面都具有重要的意义。3、开关电源就是利用电子开关器件(如晶体管、场效应管、可控硅闸流管等),通过控制电路,使电子开关器件不停地“接通”和“关断”,让电子开关器件对输入电压进行脉冲调制,从而实现DC/AC、DC/DC电压变换,以及输出电压可调和自动稳压。4、开关电源一般有三种工作模式:频率、脉冲宽度固定模式,频率固定、脉冲宽度可变模式,频率、脉冲宽度可变模式。大致由主电路、开关电源控制电路、检测电路、辅助电源四大部份组成。二.开关电源该维修哪里?1、修理开关电源时,首先用万用表检测各功率部件是否击穿短路,如电源整流桥堆,开关管,高频大功率整流管;抑制浪涌电流的大功率电阻是否烧断。再检测各输出电压端口电阻是否异常,上述部件如有损坏则需更换。2、接通电源后还不能正常工作,接着要检测功率因数模块(PFC)和脉宽调制组件(PWM),查阅相关资料,熟悉PFC和PWM模块每个脚的功能及其模块正常工作的必备条件。对于具有PFC电路的电源则需测量滤波电容两端电压是否为380VDC左右,如有380VDC左右电压,说明PFC模块工作正常。3、在开关电源维修实践中,有许多开关电源采用UC38××系列8脚PWM组件,大多数电源不能工作都是因为电源启动电阻损坏,或芯片性能下降,启动电流增大所致。遇到此情况,把与VR端相连的外电路断开,VR从0V变为5V,PWM组件正常工作,输出电压均正常。4、开关电源电路有易有难,功率有大有小,输出电压多种多样。只要抓住其核心的东西,充分熟悉开关电源的基本结构以及模块特性和,就能迅速地排除开关电源故障。以上就是有关开关电源电路图的一些基本知识,开关电源对于很多的家用电器都是很重要的,但也是最容易出现问题的一个环节,可能很多朋友不是很了解,那么在电器发生故障时,就会找不到是哪里出现问题,通过这篇文章的介绍,一定会给于大家一些帮助。
开关电源电路图 符号
你可查阅《电气工程》数据、参数速查手册。都是符合GB标准的图形、符号、数据。
小开关电源电路分析,请见图
大概说----括号内表示下图;1)是变压器正反馈振荡电路,从L1输入激励电流,L2L3获得感生电压输出,而L2作为反馈电压,增强Q2导通与截止过程,振荡频率主要由C1、R4(C3、R7)控制;D2、C2、D4(C4、R6、D4、Q1等)构成过载保护电路,正常时,C2(C4)经D2(D3)整流,输出一个直流负(正)压,当过载发生时,此电容上的压降增大,超过某一设置阀值时,会令D4(D4)击穿导通,从而拉低Q2基极电平而截止;(D2、C2、R3)为吸收电路,吸收因Q2截止时引起L1产生的高电压,保护Q2。2)基本就是下图比上图多了个吸收电路保护Q2。3)两个电路都适合。4)作为电源都应该滤除高频毛刺的,你也可以通过实验来验证是否对你的电路产生影响。
求几个开关电源电路图,350w左右的
去的人主义个都是浮云游子意就好了吧去吧去吧皮卡丘她的事了吧来吧还没有睡好啊啊啊啊啊啊啊啊啊啊啊啊看你们的人主义者也之乎就是可以的亲爱的们的话费余额不足挂齿
求一个如下图所示的开关电源电路图,谢谢
根据要求,找一个初级反馈的降压IC就可以了。比如说昂宝OB2512,如图这种典型线路即可实现,参数方面可以参考规格书来取值调整。(如果有关于参数计算问题,可以再详细交流。)
请教大虾24V/2A的开关电源电路图。望不吝赐教
你的电路图呢,图都没教什么
给个简单的开关电源电路图
次级可以重绕
如何看懂开关电源电路图
你告诉我邮箱我发资料给你一周看懂电路图
如何看懂开关电源电路图
你告诉我邮箱 我发资料给你 一周看懂电路图
求三极管开关电源电路图
这个,当开关闭合时,三极管基极得到偏流而导通,电流流过灯泡。当开关断开时,三极管基极偏压消失,三极管截止。这样做的好处是,由于基极电流很小,可以用很小很小微型开关。且开关寿命会大大延长。再一个,三极管导通不会产生电火花,因此可以用到严禁烟火的地方。
开关电源电路图怎么画?
你哭直接找IC供应商要推荐电路图参考,根据自己的实际需求具象化,设置参数就行~!
开关电源电路图为什么只有一个三级管发射机接地
三极管发射极接地是因为100%是NPN型的管子,NpN型三极管是电流从集电极到发射极,发射极也接电源的负极。而pNp型三极管是电流从发射极到集电极,发射极接电源正极。(注意,三极管一般只有两种类型,一种NPN型和pNp型,请记住,只要发射极接地,它就是NpN型三极管。
【大功率开关电源】大功率开关电源电路图?大功率可调开关电源设计方案
【大功率开关电源】大功率开关电源电路图 大功率可调开关电源设计方案 一种大功率可调开关电源的设计方案 1、引言 开关电源作为线性稳压电源的一种替代物出现,其应用与实现日益成熟。而集成化技术使电子设备向小型化、智能化方向发展,新型电子设备要求开关电源有更小的体积和更低的噪声干扰,以便实现集成一体化。对中小功率开关电源来说是实现单片集成化,但在大功率应用领域,因其功率损耗过大,很难做成单片集成,不得不根据其拓扑结构在保证电源各项参数的同时尽量缩小系统体积。 2、典型开关电源设计 开关电源一般由脉冲宽度调制(PWM,Pulse Width Modulation)控制IC(Integrated Circuit)和功率器件(功率MOSFET或IGBT)构成,且符合三个条件:开关(器件工作在开关非线性状态)、高频(器件工作在高频非接近上频的低频)和直流(电源输出是直流而不是交流)。 2.1控制IC 以MC33060为例介绍控制IC。 MC33060是由安森美(ON Semi)半导体公司生产的一种性能优良的电压驱动型脉宽调制器件,采用固定频率的单端输出,能工作在-40℃至85℃。其内部结构如图1所示[1],主要特征如下: 1)集成了全部的脉宽调制电路; 2)内置线性锯齿波振荡器,外置元件仅一个电阻一个电容; 3)内置误差放大器; 4)内置5V参考电压,1.5%的精度; 5)可调整死区控制; 6)内置晶体管提供200mA的驱动能力; 7)欠压锁定保护; 图1 MC33060内部结构图 其工作原理简述:MC33060是一个固定频率的脉冲宽度调制电路,内置线性锯齿波振荡器,振荡频率可通过外部的一个电阻和一个电容进行调节,其振荡频率如(2-1)式: 输出脉冲的宽度是通过电容CT上的正极性锯齿波电压与另外两个控制信号进行比较来实现。功率管Q1的输出受控于或非门,即只有在锯齿波电压大于控制信号期间输出才有效。 当控制信号增大时,输出脉冲的宽度将减小,具体时序参见如下图2 图2 MC33060时序图 控制信号由集成电路外部输入,一路送至死区时间比较器,一路送往误差放大器的输入端。死区时间比较器具有120mV的输入补偿电压,它限制了最小输出死区时间约等于锯齿波周期的4%,即输出驱动的最大占空比为96%.当把死区时间控制输入端接上固定的电压(范围在0-3.3V)即能在输出脉冲上产生附加的死区时间。脉冲宽度调制比较器为误差放大器调节输出脉宽提供了一个手段:当反馈电压从0.5V变化到3.5V时,输出的脉冲宽度从被死区确定的最大导通百分比时间下降到零。两个误差放大器具有从-0.3V到(Vcc-2.0)的共模输入范围,这可从电源的输出电压和电流察觉得到。误差放大器的输出端常处于高电平,它与脉冲宽度调制器的反相输入端进行”或”运算,正是这种电路结构,放大器只需最小的输出即可支配控制回路。 2.2 DC/DC电源拓扑 DC/DC电源拓扑一般分为三类:降压、升压和升降压。此处以降压拓扑介绍,简化效果图如下图3所示。输出与输入同极性,输入电流脉动大,输出电流脉动小,结构简单。 图3 Bulk降压斩波电路 在开关管导通时间ton,输入电源给负载和电感供电;开关管断开期间toff,电感中存储的能量通过二极管组成续流回路,保证输出的连续。负载电压满足如下关系式(2-2): 2.3典型电路与参数设计 典型电路如下图4所示。 图4 MC33060的降压斩波电路 MC33060作为主控芯片控制开关管的导通与截止,由其内部结构功能可知,在MC33060内部有一个+5V参考电压,通常用作两路比较器的反相参考电压,设计中1脚和2脚的比较器用来作为输出电压反馈,13脚和14脚的比较器用来检测开关管的电流是否过流。电路中2脚通过一个反相电路接参考电压,降压输出反馈经一同相电路接MC33060的1脚。当电路处于工作状态时,1脚和2脚电压就会相互比较,根据两者的差值来调整输出波形脉宽,达到控制和稳定输出的目的。 电路中过流保护采用0.1欧姆额定功率为1W的功率电阻作为采样电阻,在电流过流点,采样电阻上的电压为0.1V.14脚用作采样点,因此13脚的参考电压由Vref分压设定为0.15V,相比0.1V留有一定余地。当采样电压高于设定值时,MC33060将自动保护,关闭PWM输出。保护点还和3脚的控制信号有关,根据对该脚的功能分析,选择积分反馈电路,使得降压电路在空载或满载时,Comp脚的电压始终在正常范围(0.5V-3.5V)之内。 输出PWM波形的频率由管脚5的电容和管脚6的电阻值来确定,降压电路采用25KHz的波形频率,选择CT值为1nF电容,RT为47K的普通电阻达到设计要求。 3、本系统设计 本设计采用的是DC(Direct Current)/DC转换电路中的降压型拓扑结构。输入为220VAC和0-10V可调直流电压,输出为0-180V可调,最大输出电流能达8A,系统组成框图如下图5所示。在大功率开关电源设计中,为防止在启动时的高浪涌电流冲击,常采用软启动电路,本设计不重点介绍。 图5 系统组成框图 3.1整流滤波电路 采用全桥整流电路,如下图6所示。输出电流要求最大达到8A,考虑功率损耗和一定的余量,选择10A的方桥KBPC3510和10A的保险管。整流后的电压达310V,采用两个250V/100uF电容作滤波处理。图中开关S1和电阻R1并联为”软启动”部分,此处未作详细讲解,详细软启动设计见各种开关电源软启动设计。 图6 整流电路。 3.2控制IC与输入电路 MC33060控制电路和输入调节电路分别如下图7和图8所示,选MC33060为控制IC,其外围器件选择此处不再赘述,参考典型电路设计中参数选择部分。其中比较器1作电压采样,比较器2作电流采样。输入可调电压经分压跟随后送入比较器的负向端作为参考电压控制电源输出大小。 图7 MC33060控制电路 图8 输入调节电路 3.3反相延时驱动电路 反相延时驱动电路如下图8所示。电路中驱动芯片采用了美国International Rectifier(IR)公司的IR2110.它不仅包括基本的开关单元和驱动电路,还具有与外电路结合的保护控制功能。其悬浮沟道的设计使其可以驱动工作在母线电压不高于600V的开关管,其内部具有欠压保护功能,与外电路结合,可以方便地设计出过电流,过电压保护,因此不需要额外的过压、欠压、过流等保护电路,简化了电路的设计。 图8 反相延时驱动电路 该芯片为而输出高压栅极驱动器,14脚双列直插,驱动信号延时为ns级,开关频率可从几十赫兹到几百千赫兹。IR2110具有二路输入信号和二路输出信号,其中二路输出信号中的一路具有电平转换功能,可直接驱动高压侧的功率器件。该驱动器可与主电路共地运行,且只需一路控制电源,克服了常规驱动器需要多路隔离电源的缺点,大大简化了硬件设计。IR2110就简易真值图如下图9所示。 图9 IR2110简易真值图。 IR2110有2个输出驱动器,其信号取自输入信号发生器,发生器提供2个输出,低侧的驱动信号直接取自信号发生器LO,而高侧驱动信号HO则必须通过电平转换方能用于高侧输出驱动器。本系统中驱动双管需一片IR2110即可。 因驱动双管,且双管不能同时导通,控制IC输出只有一路信号,则在控制IC输出和驱动之间需加入反相延时电路,将控制IC输出的一路PWM经同相和反相比较器后,经电阻R29和R30的上拉分别对电容C12、C13充电产生延时,使得两路PWM具有对称互补性且具有一定的死区间隔,保证主回路中两开关管不会同时导通。在电路中HIN和LIN标号端得到的波形图如下图10所示。 图10 反相后驱动波形 3.4主回路与输出采样 主回路如图11所示,采用半桥开关电路。 图11 主回路 根据整流后的电压和输入电流参数,选择IRF840为高频开关管,其最大耐压VDS为500V,最大能承受的导通电流ID为8A,满足设计要求。工作在高频工作状态的续流二极管一般选用快恢复的二极管,此处选择HFA25TB60,能承受600V的反向压降,最大导通电流为25A,且恢复时间仅为35ns,输出部分通过两个电阻分压至电压采样电路,如下图12所示。 图12 电压采样电路 3.5过流保护电路 过流保护电路如下图13所示。 图13 过流检测电路。 在主回路的上端串联一个0.33欧姆10W的功率电阻作为采样电阻,当电流过大时,光耦中光敏三极管导通,检测电路输出高电平到IR2110的SD端,由于SD是低电平有效、高电平关断点,因此电流过大时能很好地保护电路。且如前所述,IR2110自身带有各种保护电路,故外围的电流电压保护电路可以大大简化。 4、总结 本设计给出了在非隔离拓扑下一种设计大功率开关电源的方法,电路结构简单。在主回路中采用半桥电路替代传统的单管开关电路,在上管关闭时,下管的开通能更好地保证输出续流的稳定性,且保证功率的输出。文中并未给出电感量的计算方法,因不是讨论重点,可根据电路中输出电流、电压和开关管的RDS(MOSFET管漏极和源极导通电阻)等参数来计算,实际中应留有一定的余量值。系统运行基本稳定,可考虑应用于工业电源设计中。
开关电源电路原理图
IC1是一个开关电源用的定制芯片,所以要参考芯片规格书和清楚其内部结构。7,8脚是芯片供电源的正负极,4,5内部接通是输出mos管的漏极,3脚是mos管的源极。变压器的初级(主)s绕组(5,3)由mos管驱动。
我要找交流220伏输入输出直流24伏2A开关电源电路图和讲解分折故障文章?
这个好找,但是维修不一定容易。
开关电源电路详细解析
开关电源的工作原理是: 1.交流电源输入经整流滤波成直流; 2.通过高频PWM(脉冲宽度调制)信号控制开关管,将那个直流加到开关变压器初级上; 3.开关变压器次级感应出高频电压,经整流滤波供给负载; 4.输出部分通过一定的电路反馈给控制电路,控制PWM占空比,以达到稳定输出的目的. 交流电源输入时一般要经过厄流圈一类的东西,过滤掉电网上的干扰,同时也过滤掉电源对电网的干扰; 在功率相同时,开关频率越高,开关变压器的体积就越小,但对开关管的要求就越高; 开关变压器的次级可以有多个绕组或一个绕组有多个抽头,以得到需要的输出; 一般还应该增加一些保护电路,比如空载、短路等保护,否则可能会烧毁开关电源ATX电源的主要组成部分 EMI滤波电路:EMI滤波电路主要作用是滤除外界电网的高频脉冲对电源的干扰,同时也起到减少开关电源本身对外界的电磁干扰,在优质电源中一般都有两极EMI滤波电路。 一级EMI电路:交流电源插座上焊接的是一级EMI电源滤波器电路,这是一块独立的电路板,是交流电输入后所经过的第一组电路,这个由扼流圈和电容组成的低通网络能滤除电源线上的高频杂波和同相干扰信号,同时也将电源内部的干扰信号屏蔽起来,构成了电源抗电磁干扰的第一道防线。 二级EMI电路:市电进入电源板后先通过电源保险丝,然后再次经过由电感和电容组成的第二道EMI电路以充分滤除高频杂波,然后再经过限流电阻进入高压整流滤波电路。保险丝能在电源功率太大或元件出现短路时熔断以保护电源内部的元件,而限流电阻含有金属氧化物成分,能限制瞬间的大电流,减少电源对内部元件的电流冲击。 桥式整流器和高压滤波:经过EMI滤波后的市电,再经过全桥整流和电容滤波后就变成了高压的直流电。将输入端的交流电转变为脉冲直流电,目前有两种形式,一种是全桥就是把四个二极管封装在一起,一种是用4个分立的二极管组成桥式整流电路,作用相同,效果也一样。 一般说来,在全桥附近应该有两个或更多的高大桶状元件,即高压电解电容,其作用是将脉动的直流电滤除交流成分而输出比较平稳的直流电。高压电解电容的使用与开关电路的设计有密切关系,其容量往往是以往电源评测时的焦点,但实际上它的容量和电源的功率毫无关系,不过增大它的容量会减小电源的纹波干扰,提高电源的电流输出质量。 PFC电路:PFC电路称为功率因素校正或补偿电路,功率因素越高,电能利用率就越大。 目前PFC电路有两种方式,一种是无源式PFC,又称被动式PFC,一种是有源式PFC,又称主动式PFC。无源式PFC是通过一个工频电感来补偿交流输入的基波电流与电压的相位差,迫使电流与电压相位一致,无源PFC效率较低,一般只有65%-70%,且所用的工频电感又大又笨重,但由于成本低,仍有许多 ATX电源采用这种方式。有源PFC是由电子元器件组成的,体积小,重量轻,通过专用的IC去调整电流波形的相位,效率大大提高,达95%以上,但由于成本较高,通常只能在高级应用场合才能看到。 开关三极管与开关变压器:开关电源顾名思义其核心就是开关二字。开关三极管和开关变压器是开关电源的核心部件,通过自激式或他激式使开关管工作在饱和、截止(即开、关)状态,从而在开关变压器的副绕组上感应出高频电压,再经过整流、滤波和稳压后输出各种直流电压。开关三极管和开关变压器是ATX电源的核心部件,其质量直接影响电源的好坏和使用寿命,尤其是开关三极管,工作在高反压状态下,没有足够的保护电路,很容易击穿烧毁。开关管的品质直接决定了电源的稳定性,它也是电源中主要的发热元件,拆开电源后看到的主散热片上的两个晶体管就是开关管。 影响高频开关变压器性能的因素包括铁氧体的效率、磁芯截面积的大小和磁隙的宽度,截面积过小的变压器容易产生磁饱和而无法输出较大的功率,各个绕组的匝数直接影响输出的电压,通常我们无法具体的掌握这些参数,所以无法准确的判断变压器到底能输出多大的功率,只有通过电子负载机测量才能知道,另外,开关变压器的输出端虽然很多,但其中的某些输出端使用的却是相同的绕组,比如+3.3VDC和+5VDC就是这样,所以当+3.3VDC输出最大电流时+ 5VDC就无法输出很大的电流了,所以我们不能将电源各个输出端的功率进行简单的累加。 除主变压器外,一般电源内还应有两个小变压器,其中一个将开关电路控制信号进行放大以驱动开关管进行工作,同时还可以将开关管工作的高压区和集成电路工作的低压区进行物理隔离。另外一个完全是一套独立的小型开关电源,这就是我们所说的待机电路,其输出的电压为电源的主电路供电,同时通过+5V StandBy端输出到主板来实现唤醒功能。 低压整流滤波电路:经过高频开头变压器降压后的脉动电压同样要使用二极管和电容进行整流和滤波,只是此时整流时的工作频率很高,必须使用具有快速恢复功能的肖特基整流二极管,普通的整流二极管难当此任,而整流部分使用的电容也不能有太大的交流阻抗,否则就无法滤除其中的高频交流成分,因此选择的电容不但容量要大,还要有较低的交流电阻才行,此外还能见到1、2个体积硕大的带磁心的电感线圈,与滤波电容一起滤除高频的交流成分,保证输出纯净的直流电。 由于低压整流端需要输出很大的电流,所以整流二极管同样会产生大量的热量,这些二极管与前面的开关管都需要单独的散热片进行散热,电源中另一个散热片上所固定的就是这些元件。从这些元件输出的就是各种不同电压的输出电流了。 稳压和保护电路:稳压电路通常是从电源输出端的输出电压取样出部分电压与标准电压作比较,比较出的差值经过放大后去驱动开关三极管,调节开关管的占空比,从而达到电压的稳定。保护电路的作用是通过检测各端输出电压或电流的变化,当输出端发生短路、过压、过流、过载、欠压等到现象时,保护电路动作,切断开关管的激励信号,使开关管停振,输出电压和电流为零,起到保护作用