- CarieVinne
-
“数学王冠上的明珠”指的是哥德巴赫猜想。
哥德巴赫猜想:
1742年6月7日,德国数学家哥德巴赫在写给著名数学家欧拉的一封信中,提出了一个大胆的猜想:
任何不小于3的奇数,都可以是三个质数之和(如:7=2+2+3,当时1仍属于质数)。
同年,6月30日,欧拉在回信中提出了另一个版本的哥德巴赫猜想:任何偶数,都可以是两个质数之和(如:4=2+2。当时1仍属于质数)。
这就是数学史上著名的“哥德巴赫猜想”。显然,前者是后者的推论。因此,只需证明后者就能证明前者。所以称前者为弱哥德巴赫猜想(已被证明),后者为强哥德巴赫猜想。由于现在1已经不归为质数,所以这两个猜想分别变为:
任何不小于7的奇数,都可以写成三个质数之和的形式;任何不小于4的偶数,都可以写成两个质数之和的形式。
扩展资料:
哥德巴赫猜想证明误区:
研究哥德巴赫猜想的四个途径分别是:殆素数,例外集合,小变量的三素数定理,以及几乎哥德巴赫问题。
殆素数就是素因子个数不多的正整数。现设N是偶数,虽然不能证明N是两个素数之和,但足以证明它能够写成两个殆素数的和,即N=A+B,其中A和B是素因子个数都不太多殆素数。
用“a+b”来表示如下命题:每个大偶数N都可表为A+B,其中A和B的素因子个数分别不超过a和b。显然,哥德巴赫猜想就可以写成"1+1"。在这一方向上的进展都是用所谓的筛法得到的。
筛法证明“1 + 2 ”已经走到了尽头,这条路很显然也行不通。
而民科证明过程是这样:2N为任一大偶数,A为2N前面的最大素数。那么2N就可以写成(1,2N-1)(2,2N-2)(3,2N-3)…(N,2N-N)这样的数组,还说可以用筛法把这个数组中不是齐素数的组合筛去,只要剩下的组合大于0那就证明成功了,这想法很简单。
先用筛法去筛组合中前一个数,剩下(3,2N-3)(5,2N-5)(7,2N-7)…(A,2N-A),这样是保证了组合的前一个数是偶数,但是前一个数可以筛,后一个数却不能筛。
参考资料来源:百度百科-世界三大数学猜想
- 左迁
-
自然科学的皇后是数学,数学的皇冠是数论。而哥德巴赫猜想,则是皇冠上
那颗璀璨夺目的明珠。自从十八世纪中叶哥德巴赫提出这一猜想之后,无数的数
学家都被这颗明珠发出的耀眼光彩所吸引,纷纷加入到摘采它的行列中去。然而
却始终没有人能够成功。
十八世纪过去了,没有人能证明它。
十九世纪过去了,仍然没有人能证明它。
历史进入了二十世纪,自然科学的发展日新月异,无数的科学堡垒被科学家们逐
一攻克。到了本世纪的二十年代,哥德巴赫猜想开始有了一点进展。各国数学家
迂回前进,逐渐缩小了包围圈。在这场世界范围内的世纪竞赛中,一位大家耳熟
能详的中国人--陈景润,战胜了各国数学好手,获得了领先的殊荣。尽管哥德巴
赫猜想还只是一个猜想,但是自从它被提出直至今日,仍然没有其它的科学高峰
可以遮掩它的光芒。历史又到了世纪之交,即将翻开崭新的一页,而人类却仍然
只能带着这个遗憾跨入二十一世纪。哥德巴赫猜想,究竟是怎样的难题呢?
寻找最大的素数
1,2,3,4,5,……,这些数称为正整数。在正整数中,能被2整除的数,
如2,4,6,8,……,被称为偶数。不能被2整除的,如1,3,5,7,……,则被
称为奇数。还有一种数,如2,3,5,7,11等等,只能被1和它本身,而不能被其
它正整数整除的,叫做素数。除了1和它本身,也能被其它正整数整除的,如4,
6,8,9等等,就称为合数。一个整数,如能被一个素数所整除,这个素数就叫做
这个整数的素因子。如6,就有2和3两个素因子;而210,就有2,3,5,7四个素
因子。
素数在数学中是非常重要的一个概念。素数重要的理由,希腊数学家欧几里
德(Euclid,约公元前350年~公元前300年)早在两千多年前就已经知道
了。欧几里德搜集了当时所有他可以得到的数学知识,写出了一本13卷的数学著
作《原本》。书中有这样一个现在被称为“算术基本定理”的定理:每一个大于
1的自然数,或者是素数,或者可表示为若干素数的乘积,这种表示若不计素数排
列的次序则是唯一的。
例如,630是7个素因子(其中一个重复出现两次)的乘积:
630=2×3×3×5×7
上式中等号右边的部分被称为630这个数的素因子分解。
算术基本定理告诉我们,素数是构作自然数的基本的建材,所有的自然数都
是由他们建造的。素数很像化学家的元素或者是物理学家的基本粒子。掌握了任
一个数的素因子分解,数学家就获得了有关这个数的几乎全部信息。因此素数性
质的研究就成为了数论中最古老与最基本的课题之一。早在欧几里德时代就已经
证明了素数有无穷多个。然而对于每一个人来说,素数似乎并没有什么特殊的地
方。2,3,5,7,11……,每一个人都能随口说出一串来。但是往后呢?让我们
来看一看吧。
我们首先选定一个自然数,把它记为N;对小于N的素数的个数我们记为π(n
)。比较随着N的不同取值π(n)/n发生的变化,我们就会发现顺着自然数的序
列,素数越来越少了。
表1:素数的分布
N π(n) π(n)/n
10 4 0.400
100 25 0.250
1000 168 0.168
10000 1229 0.123
100000 9592 0.096
1000000 78498 0.078
17世纪法国数学家梅森(Mersenne)提出了一种寻找素数的方法。
梅森在1644年出版的著作《物理数学随感》(Cogitata Physica-Mathemati
c)的序言中称,对于n=2,3,5,7,13,17,19,31,67,127,257,数Mn
=2n-1是素数,而对其它所有小于257的数n,Mn是合数。他是如何得到这一
结论的呢?无人知晓。但他确实惊人地接近了真理。直到1947年有了台式计算机
,人们才能检查他的结论。他只犯了5个错误:M67和M257不是素数,而M61,
M89和M107是素数。
梅森数提供了一种找出非常大的素数的漂亮的方法。函数2n随n的增大快速增
长,这保证了梅森数Mn很快就变得极大,人们便想到去寻找那些使Mn为素数
的n。这类素数称为梅森素数。初等代数知识告诉我们,除非n本身是素数,否
则Mn不会是素数,所以我们只需注意取素数值的n。不过大多数素数n也导致
梅森数Mn是合数。看来寻找适当的n并不容易--尽管前几个数让你觉得并不难
。1998年2月12日美国加州州立大学19岁的罗兰·克拉克森新找到了一个合适的n
,他利用电脑发现了目前已知的最大素数。这个素数是2乘以3021377次方减1。这
是一个909526位数,如果用普通字号将这个数字连续写下来,它的长度可达3000
多米。克拉克森利用课余时间算了46天,在1月27日终于证明这是一个素数。这个
素数到底有多大呢?让我们用另外一个大素数来比较一下吧!
在一个普通的8×8个方格的棋盘,我们按如下规则往方格里摆放2毫米厚的筹
码(如英国10便士的硬币)。先将方格编号,为1~64。在第一个格子里放2枚筹
码,第二个格子里放4枚筹码,第三个格子里放8枚筹码。以此类推,下一格里放
的筹码数恰为前一格里的两倍。于是,在第n个格子有2n个筹码,在最后一格里
就有264个筹码。你能想象这摞筹码有多高吗?1米?100米?10000米?肯定不对
!好,不管你信不信。这摞筹码将直冲云天,超过月亮(它只不过400000千米远
),超过太阳(1.5亿千米远),几乎直达(除太阳外)最近的恒星半人马座的α
星,离地球大约4光年。用十进位数表示,264为:18446744073709551616。
264就那么可观,为了得到出现在目前最大的素数中的23021377-1,你需要在
一个比1738×1738个方格还要大的棋盘上玩上面的游戏!
寻找大素数具有实际应用价值。它促进了分布式计算技术的发展。用这种方
法,有可能使用大量个人电脑来做本来要用超级计算机才能完成的项目。此外,
在寻找大素数的过程中,人们必需反复乘很大的整数。现在一些研究者已经发现
加快运算速度的办法,而这些办法又可以用在其他科学研究上。大素数还可以用
来加密和解密。寻找梅森素数的方法还可用来测试电脑硬件运算是否正确。
相对于无穷的素数而言,我们迄今所发现的还只是极其有限的。同时,我们能够
证明与素数有关的命题是很少的。哥德巴赫猜想正是一个关于素数的命题,一个
我们人类用了250多年时间还未证明的命题。
哥德巴赫的猜想
看起来似乎是十分简单的数字,却包含着许多有趣而深奥的学问。在数论研
究中,往往根据一些感性认识,小心的提出“猜想”,然后再通过严格的数学推
论来论证它。上文中我们说过,任何合数都可以分解为素数的乘积,那么把合数
分解成素数之和的情况又如何呢?这里面是否有什么规律呢?
一七四二年,德国的一位中学教师哥德巴赫(Goldbach)发现,“任何一个
大偶数都可以写成两个素数之和”。例如:6=3+3,9=2+7等等。他对许多偶
数进行了验证,都说明是对的。但是这需要给出证明。因为尚未证明的数学命题
只能称之为猜想。他自己不能证明这个命题,于是就向当时赫赫有名的瑞士大数
学家欧拉(Euler)请教,请他来帮忙。欧拉是当时最负盛名的数学家之一,尽管
他对哥德巴赫的猜想表示相信,但是他却被这个貌似简单的命题难住了。一直到
他去世,欧拉也没有能够完成对哥德巴赫猜想的证明。
哥德巴赫的信中提出了两个猜想:
任何一个大于2的偶数都是两个素数之和。
任何一个大于5的奇数都是3个素数之和。
容易证明猜想(2)是猜想(1)的推论,所以问题就归结为证明猜想(1)。
事实上,对于这个猜想,有人对一个一个的偶数进行了验算。一直到几亿之
巨,都表明这个猜想是正确的。但是更大更大的数呢?猜想也应该是对的。猜想
应当被证明。然而证明它确是很难很难。1900年,德国数学家希尔伯特在国际数
学会的演讲中,把哥德巴赫猜想看成是以往遗留的最重要的数学问题之一。他将
“哥德巴赫猜想”列入了他提出的“当代数学家的23个挑战”之中。而1912年,
德国数学家朗道在国际数学会的演说中说,即使证明较弱的命题“(3)存在一个
正整数a,使每一个大于1的整数都可以表示为不超过a个素数之和”,也是现代
数学家所力不能及的。要说明的是,如果(1)成立,则取a=3即可。1921年,
英国数学家哈代在哥本哈根召开的数学会上说过,猜想(1)的困难程度是可以和
任何没有解决的数学问题相比的。
然而,人类的聪明才智总是不断的突破着一个又一个他们自己设定的极限。
就在此后的1年,即1922年,英国数学家哈代与李特伍德提出了一个研究哥德巴赫
猜想的方法,即所谓的“园法“。1937年,苏联数学家依·维诺格拉朵夫应用圆
法,结合他创造的三角和估计方法,证明了每个充分大的奇数都是三个素数之和
。从而基本上证明了哥德巴赫信中提出的猜想(2)。
就在一部分数学家全力攻坚哥德巴赫猜想(2)的时候,另一部分数学家也向
猜想(1)吹响了冲锋的号角。很早以前,人们就想证明,每一个大偶数是两个“
素因子不太多的”整数之和。他们想这样子来设置包围圈,想由此来逐步、逐步
证明哥德巴赫猜想这个命题,即一个素数加一个素数(1+1)是正确的。于是,人
们一步一步的,尽管非常缓慢,但是总算逐渐接近了证明哥德巴赫猜想。
1920年,挪威数学家布朗改进了有2000多年历史的埃拉多染尼氏“筛法”,
证明了每个充分大的偶数都是两个素因子个数不超过9的正整数之和。相对于最终
命题(1+1),我们将布朗的结果记为(9+9)。1924年,德国数学家拉德马哈
尔证明了(7+7);1930年,苏联数学家史尼尔曼用他创造的整数“密率”结合
布朗筛法证明了命题(3),并可以估算出a的值。1932年,英国数学家埃斯特曼
证明了(6+6);一九三八年,苏联数学家布赫斯塔勃证明了(5+5);一九四
○年,他又证明了(4+4)。一九五六年,数学家维诺格拉多夫证明了(3+3)
。
我国数学家华罗庚早在30年代就开始研究这一问题,得到了很好的成果,他证
明了对于“几乎所有”的偶数,猜想(1)都是对的。解放后不久,他就倡议并指
导他的一些学生研究这一问题,取得了许多成果,获得国内外高度评价。1965年
,我国数学家初显身手,由王元证明了(3+4),同一年,苏联数学家阿·维诺
格拉朵夫又证明了(3+3)。1957年,王元证明了(2+3)。包围圈越来越小,
越来越接近(1+1)了。但是以上所有的证明都有一个弱点,就是其中的两个数
没有一个可以肯定是素数。
对此,事实上早就有数学家注意到了。于是,他们另外设置了一种包围圈,
即设法证明,“任何一个大偶数都可以写成一个素数和另一个素因子不太多的整
数之和。”1948年,匈牙利数学家兰恩易重新开辟了另一个战场,另劈捷径的证
明了:每个大偶数都是一个素数和一个“素因子都不超过六个的”数之和。1962
年,我国数学家、山东大学讲师潘承洞与苏联数学家巴尔巴恩才各自独立的证明
了(1+5),前进了一步;同年,王元、潘承洞和巴尔巴恩又都证明了(1+4)
。一九六五年,布赫斯塔勃、维诺格拉多夫和数学家庞皮艾黎都证明了(1+3)
。
人们在哥德巴赫猜想的证明方面所取得的不断进展,仿佛使人们已经看到了
完全证明它的希望。从(1+3)到(1+1),只剩下了两步之遥。究竟谁能够最
后摘下这颗皇冠上的明珠呢?
1966年,中国年青的数学家陈景润证明了(1+2),取得了迄今世界上关于猜想
(1)最好的成果。他证明了,任何一个充分大的偶数,都可以表示成为两个数之
和,其中一个是素数,另一个或为素数;或为两个素数的乘积。虽然“哥德巴赫
定理”还是没有产生,但是这一离它最近的结论却被世界各国一致冠以一个中国
人的名字--“陈氏定理”。
摘取皇冠上的明珠
1933年,陈景润诞生在福建省福州市。他的父亲是一名邮政局的小职员,母
亲则一位善良却操劳过度的妇女,一共生下了十二个孩子,养活了六个。虽然没
有哪一对父母不愿意疼爱自己的孩子,但是排行第三的陈景润上有哥哥姐姐,下
有弟弟妹妹,无法成为父母最疼爱的孩子。仿佛是一个多余的人一样,陈景润没
有享受到多少童年的欢乐。
当小景润刚刚开始记事的时候,日本鬼子就打进了福建省。幼小的他只能提
心吊胆的过日子,心灵受到了极大的伤害。在家里得不到乐趣,在小学里他也总
是被人欺负,这使他养成了内向的性格。陈景润开始喜欢上了数学,因为数学题
的演算可以帮他打发掉大部分的时间。
小学毕业之后,陈景润在初中里仍然是一个受到歧视的孩子。抗战结束,陈
景润进入了英华书院。当时的学校里,有一位曾经是国立清华大学航空系主任的
数学老师。这位老师学识渊博,诲人不倦,激发了许多同学对数学的热爱。
有一次,老师上课时给同学们介绍了一道数论中著名的难题,这就是哥德巴
赫猜想。对于别的同学,或许三分钟热度很快就过去了,因为这是一道困扰了整
个人类两个世纪的难题!不要说解决它,就是对一位大数学家而言,想要取得一
点进展也要耗费巨大的努力。然而,却被这个难题迷住了,并将它深深的印在了
脑海,直至付出了一生的心血!
高中毕业之后,陈景润进入了厦门大学数学系。由于成绩特别优异,他提前
毕业,站在了讲台上,成为了一名老师。然而长期养成的内向性格却使他无法像
高中的那位老师一样把自己丰富的知识全部传授给学生。几经周折,他的数学天
赋被当时在中国科学院数学研究所供职的华罗庚发现,陈景润于1956年被调入这
一中国数学研究的圣殿,成为了一名助理研究员。
从此,他的数学天赋得到了充分展示的机会。短短几年,他就在圆内整点问
题,球内整点问题和华林问题等方面,改进了中外数学家的结果。单单就这些成
就而言,他已经获得了巨大的成功。但是他始终没有忘记高中时在他心里留下的
那个深深的烙印--哥德巴赫猜想。在具备了充分的条件之后,他向这颗明珠进军
了!
不懈的努力结出了丰硕的成果。陈景润终于在摘取明珠的道路上又迈出了极
为重要的一步。在对筛法作了新的重要改进之后,他在1965年初步解决了(1+2
),写出了长达200多页的证明。1966年5月,陈景润在中国科学院的刊物《科学
通报》第十七期上宣布他已经证明了(1+2)。
就在一年以前,外国数学家使用高速计算机证明了(1+3)。而陈景润仅靠
手写心算,就得出了更好的结论。但是由于证明过于烦琐,需要进一步的简化。
于是,陈景润又扎进了稿纸中,继续着他的攀登之路。一切与研究无关的事情,
都不能扰乱他的思绪。就在他那间6平方米的小屋里,在几麻袋的演算稿纸间,陈
景润忍受着常人所不能忍受的艰辛困苦,孜孜不倦的追逐着那一个梦想。
1973年春节刚过,陈景润完成了他的论文的修改稿《大偶数表为一个素数与
不超过两个素数乘积之和》,即(1+2),并予以发表。陈景润在论文中证明了
:
每个大偶数可表为一个素数及一个不超过两个素数的乘积之和;
设D(N)是N表为两个素数之和的表法个数,证明了对充分大偶数N有D(N)<7.8342(
N)/(LnN)2;
这两个结论把哥德巴赫猜想的证明大大推进一步,并在国际上被称为“陈氏
定理”。
这一成果在世界数学界引起了强烈反响,为我国赢得了巨大的国际声誉。西
方记者迅速知道了此事,消息很快就传遍了全球。英国数学家哈勃斯丹和德国数
学家李斯特得知此事时,著作《筛法》正在印刷。然而他们立即抽回书稿重新编
写,加入了第十一章:“陈氏定理”,并给予极高的评价:“从筛法的任何方面
来说,它都是光辉的顶点”。而同时在国外的一些数学刊物上,诸如“杰出的成
就”、“辉煌的定理”等等类似的赞美之词不胜枚举。一位英国数学家甚至写信
给他说道,“你移动了群山!”
令人痛惜的是,长期的艰苦研究给陈景润的身体带来了许多的病痛。虽然他
受到了党和国家的亲切关怀,仍然由于心力交悴,没能跨出证明哥德巴赫猜想这
个令各国数学家前赴后继为之奋斗了250多年的古典数学难题的最后一步,留下了
本世纪数学史上最大的一个遗憾。尽管如此,在30多道世界性的数论难题中,陈
景润独自攻克了六、七道,尤其是在对哥德巴赫猜想证明方面所取得的成就,至
今仍然无人能望其项背。
1996年3月19日,,一个对于整个世界数学界来说都是令人扼腕痛惜的日子。
中国科学院院士、数学研究所一级研究员陈景润教授因长期患病,医治无效,与
世长辞,享年63岁。
世纪的期盼
很多人不明白,研究哥德巴赫猜想这样一个“纯粹的数字游戏”有什么意义
呢?要知道,科学成就大概可以分为两类。一种是经济价值明显,可以直接以物
质财富的多少来计算的,是“有价之宝”;然而另一种成就是在宏观世界、微观
世界、宇宙天体、基本粒子等领域之中取得的,它们的经济价值无法估算,远远
超出人们的想象,被称为“无价之宝”。陈景润的“陈氏定理”就是属于后者。
哥德巴赫猜想对于数学而言是非常重要的,事实上作为对素数这一数学“基
本粒子”的一个最重要的猜想,解决它将会使整个人类对自然科学的认识前进一
大步。因此有不少数学家致力于简化“陈氏定理”的证明。目前世界上共有好几
个简化证明,最简单的是由我国数学家丁夏畦、潘承洞与王元共同得到的。
在人类研究哥德巴赫猜想的过程中所发明、应用的许多方法,不仅对数论有
广泛的应用,而且也可以用到不少数学分支中去,推动了这些数学分支的发展,
为整个社会的前进提供了无穷的动力。比如素数就为人类提供了编制密码的好方
法,为人们通讯安全起了很大的作用。作为自然科学大厦基石的数学,它的每一
个进步,哪怕是极其微小的,都可能使我们将整个大厦构筑得更加辉煌与壮观。
又过去了数十年的时间,对哥德巴赫猜想证明的尝试虽然它被提出的那一天
起就从来就没有停止过,但是整个世界却又再次长时间的陷入了困惑之中。而今
,人类又一次站在了世纪之交的历史时刻。科学技术的迅猛发展给科学家们攀登
知识的高峰提供了远胜于前的便利条件。尤其是高速计算机的使用,使得一些诸
如“四色定理”之类的数学难题迎刃而解。但是对于哥德巴赫猜想这颗皇冠上的
明珠,人类的聪明才智是否能在下一个世纪让它耀眼的光环完全显露呢?
没有人知道答案,世纪的期盼在向人类召唤。
- echo
-
你好!“哥德巴赫猜想”这一200多年悬而未决的世界级数学难题,曾吸引了各国成千上万位数学家的注意,而真正能对这一难题提出挑战的人却很少。陈景润在高中时代,就听老师极富哲理地讲:自然科学的皇后是数学,数学的皇冠是数论,“哥德巴赫猜想”则是皇冠上的明珠。这一至关重要的启迪之言,成了他一生为之呕心沥血、始终不渝的奋斗目标。
陈景润在夜以继日的研究数学为证明“哥德巴赫猜想”,摘取这颗世界瞩目的数学明珠,陈景润以惊人的毅力,在数学领域里艰苦卓绝地跋涉。辛勤的汗水换来了丰硕的成果。1973年,陈景润终于找到了一条简明的证明“哥德巴赫猜想”的道路,当他的成果发表后,立刻轰动世界。其中“1+2”被命名为“陈氏定理”,同时被誉为筛法的“光辉的顶点”。华罗庚等老一辈数学家对陈景润的论文给予了高度评价。世界各国的数学家也纷纷发表文章,赞扬陈景润的研究成果是“当前世界上研究‘哥德巴赫猜想"最好的一个成果”。
哥德巴赫猜想
陈景润在福州英华中学读书时,有幸聆听了清华大学调来的一名很有学问的数学教师沈元讲课。他给同学们讲了一道世界数学难题:“大约在200年前,一位名叫哥德巴赫的德国数学家提出了 ‘任何一个大于2的偶数均可表示两个素数之和", 简称(1+1)。他一生也没证明出来,便给俄国圣彼得堡的数学家欧拉写信,请他帮助证明这道难题。欧拉接到信后,就着手计算。他费尽了脑筋,直到离开人世,也没有证明出来。之后,哥德巴赫带着一生的遗憾也离开了人世,却留下了这道数学难题。200多年来,这个哥德巴赫猜想之谜吸引了众多的数学家,从而使它成为世界数学界一大悬案”。老师讲到这里还打了一个有趣的比喻,数学是自然科学皇后,“哥德巴赫猜想”则是皇后王冠上的明珠!这引人入胜的故事给陈景润留下了深刻的印象,“哥德巴赫猜想”像磁石一般吸引着陈景润。从此,陈景润开始了摘取数学皇冠上的明珠的艰辛历程...... 哥德巴赫猜想 歌德巴赫猜想
1729年~1764年,哥德巴赫与欧拉保持了长达三十五年的书信往来。
在1742年6月7日给欧拉的信中,哥德巴赫提出了一个命题。他写道:
"我的问题是这样的:
随便取某一个奇数,比如77,可以把它写成三个素数之和:
77=53+17+7;
再任取一个奇数,比如461,
461=449+7+5,
也是这三个素数之和,461还可以写成257+199+5,仍然是三个素数之和。这样,我发现:任何大于7的奇数都是三个素数之和。
但这怎样证明呢?虽然做过的每一次试验都得到了上述结果,但是不可能把所有的奇数都拿来检验,需要的是一般的证明,而不是一个别的检验。"
欧拉回信说:“这个命题看来是正确的,但是他也给不出严格的证明。同时欧拉又提出了另一个命题:任何一个大于2的偶数都是两个素数之和,但是这个命题他也没能给予证明。”
不难看出,哥德巴赫的命题是欧拉命题的推论。事实上,任何一个大于5的奇数都可以写成如下形式:
2N+1=3+2(N-1),其中2(N-1)≥4.
若欧拉的命题成立,则偶数2(N-1)可以写成两个素数之和,于是奇数2N+1可以写成三个素数之和,从而,对于大于5的奇数,哥德巴赫的猜想成立。
但是哥德巴赫的命题成立并不能保证欧拉命题的成立。因而欧拉的命题比哥德巴赫的命题要 更高。
现在通常把这两个命题统称为哥德巴赫猜想 指陈景润证明了哥德巴赫猜想
牛顿
物理学家牛顿小时候看到苹果熟了,掉下来很好奇,他想,地球上的东西,失去了支持后为什么都掉到地上来,而不会向其它方向掉呢?后来,他终于发现了万有引力定律。
爱迪生
爱迪生小时候对什么都感兴趣。对自己不了解的事情总想试一试,弄个明白。有一次他看见花园的篱笆边有一个野蜂窝,感到很奇怪,就用棍子去拨,想看个究竟,结果脸被野蜂蜇得肿了起来,他还是不甘心,非看清楚蜂窝的构造才行。爱迪生后来成了举世闻名的大发明家。
哥白尼
哥白尼慑于教会的统治,怕遭到反对和迫害,迟迟不愿将《天体运行论》公开出版。1543年5月24日,哥白尼在他弥留之际,才在病榻上见到了刚刚出版的《天体运行论》样书。
尽管哥白尼的“太阳中心说”公布后,受到社会上宗教势力和守旧的人们的污蔑和攻击,甚至于信仰宣传这一学说的人也被残酷的镇压和迫害,但是哥白尼的学说,取得了最终的胜利。哥白尼和他的《天体运行论》就像是黑暗夜空中闪烁的巨星,一直放射着璀璨的光芒。
科学家的实例随便选一个毛、白痴哈? “数学皇冠上的明珠”,指的是陈景润把哥德巴赫猜想的证明推进了一大步。
在现代数学史上,陈景润的名字与哥德巴赫猜想紧紧联系在一起。被誉为光辉成就的“陈氏定理”将哥德巴赫猜想的证明推进了一大步,使中国在这一领域的研究上居世界领先地位。
1953年,陈景润毕业于厦门大学数学系。由于他对数论中一系列问题的出色研究,受到华罗庚教授的重视,被调入中国科学院数学研究所工作,后来就有了“ 罗庚慧眼识景润”的佳话。虽然当时的生活条件非常艰苦,在仅有6平方米的小屋里陈景润坚持埋头于哥德巴赫猜想的研究,经过无数个日夜、几度寒暑的艰苦努 力, 终于取得了震惊世界的成就。然而,陈景润付出的努力也是惊人的,用掉的演算草稿纸可以装满几个麻袋,并且积劳成疾。即使如此,躺在病榻上的他,仍锲而不舍 地耕耘着。陈景润在数论中其他著名问题,如高斯圆内格点问题、球内格点问题、塔里问题、华林问题等的研究上也做出了重要贡献。陈景润是国际知名的大数学家,深受人们的敬重。但他并没有产生骄傲自满情绪,而是把功劳都归于祖国和人民。为了维护祖国的利益,他不惜牺牲个人的名利。
1977年的一天,陈景润收到一封国外来信,是国际数学家联合会主席写给他的,邀请他出席国际数学家大会。这次大会有3000人参加,参加的都是世界上 著名的数学家。大会共指定了10位数学家作学术报告,陈景润就是其中之一。这对一位数学家而言,是极大的荣誉,对提高陈景润在国际上的知名度大有好处。
陈景润没有擅作主张,而是立即向研究所党支部作了汇报,请 党的指示。党支部把这一情况又上报到科学院。科学院的党组织对这个问题比较慎重,因为当时中国在国际数学家联合会的席位,一直被台湾占据着。
院领导回答道:“你是数学家,党组织尊重你个人的意见,你可以自己给他回信。”
陈景润经过慎重考虑,最后决定放弃这次难得的机会。他在答复国际数学家联合会主席的信中写到:“第一,我们国家历来是重视跟世界各国发展学术交流与友好关 系的,我个人非常感谢国际数学家联合会主席的邀请。第二,世界上只有一个中国,唯一能代表中国广大人民利益的是中华人民共和国,台湾是中华人民共和国不可 分割的一部分。因为目前台湾占据着国际数学家联合会我国的席位,所以我不能出席。第三,如果中国只有一个代表的话,我是可以考虑参加这次会议的。”为了维 护祖国母亲的尊严,陈景润牺牲了个人的利益。
1979年,陈景润应美国普林斯顿高级研究所的邀请,去美国作短期的研究访问工作。普林斯顿研究所的条件非常好,陈景润为了充分利用这样好的条件,挤出一切可以节省的时间,拼命工作,连中午饭也不回住处去吃。有时候外出参加会议,旅馆里比较嘈杂,他便躲进卫生间里,继续进行研究工作。正因为他的刻苦努力,在美国短短的五个月里,除了开会、讲学之外,他完成了论文《算术级数中的最小素数》,一下 子把最小素数从原来的80推进到16。这一研究成果,也是当时世界上最先进的。
在美国这样物质比较发达的国度,陈景润依旧保持着在国内时的节俭作风。他每个月从研究所可获得2000美金的报酬,可以说是比较丰厚的了。每天中午,他从不去研究所的餐厅就餐,那里比较讲究,他完全可以享受一下的,但他都是吃自己带去的干粮和水果。他是如此的节俭,以至于在美国生活五个月,除去房租、水电花去1800美元外,伙食费等仅花了700美元。等他回国时,共节余了7500美元。
这笔钱在当时不是个小数目,他完全可以像其他人一样,从国外买回些高档家电。但他把这笔钱全部上交给国家。他是怎么想的呢 用他自己的话说:“我们的国家还不富裕,我不能只想着自己享乐。”
陈景润就是这样一个非常谦虚、正直的人,尽管他已功成名就,然而他没有骄傲自满,
- 侠客
-
2011-5-3 18:53 提问者: 神龙s再现 | 浏览次数:8007次
我来帮他解答 输入内容已经达到长度限制还能输入 9999 字插入图片删除图片插入地图删除地图插入视频视频地图不登录也可以回答
参考资料:提交回答取消
2011-5-9 18:35 精彩回答 2011-5-9 18:35 热心网友 “哥德巴赫猜想”这一200多年悬而未决的世界级数学难题,曾吸引了各国成千上万位数学家的注意,而真正能对这一难题提出挑战的人却很少。陈景润在高中时代,就听老师极富哲理地讲:自然科学的皇后是数学,数学的皇冠是数论,“哥德巴赫猜想”则是皇冠上的明珠。这一至关重要的启迪之言,成了他一生为之呕心沥血、始终不渝的奋斗目标。
陈景润在夜以继日的研究数学为证明“哥德巴赫猜想”,摘取这颗世界瞩目的数学明珠,陈景润以惊人的毅力,在数学领域里艰苦卓绝地跋涉。辛勤的汗水换来了丰硕的成果。1973年,陈景润终于找到了一条简明的证明“哥德巴赫猜想”的道路,当他的成果发表后,立刻轰动世界。其中“1+2”被命名为“陈氏定理”,同时被誉为筛法的“光辉的顶点”。华罗庚等老一辈数学家对陈景润的论文给予了高度评价。世界各国的数学家也纷纷发表文章,赞扬陈景润的研究成果是“当前世界上研究‘哥德巴赫猜想"最好的一个成果”。
哥德巴赫猜想
陈景润在福州英华中学读书时,有幸聆听了清华大学调来的一名很有学问的数学教师沈元讲课。他给同学们讲了一道世界数学难题:“大约在200年前,一位名叫哥德巴赫的德国数学家提出了 ‘任何一个大于2的偶数均可表示两个素数之和", 简称(1+1)。他一生也没证明出来,便给俄国圣彼得堡的数学家欧拉写信,请他帮助证明这道难题。欧拉接到信后,就着手计算。他费尽了脑筋,直到离开人世,也没有证明出来。之后,哥德巴赫带着一生的遗憾也离开了人世,却留下了这道数学难题。200多年来,这个哥德巴赫猜想之谜吸引了众多的数学家,从而使它成为世界数学界一大悬案”。老师讲到这里还打了一个有趣的比喻,数学是自然科学皇后,“哥德巴赫猜想”则是皇后王冠上的明珠!这引人入胜的故事给陈景润留下了深刻的印象,“哥德巴赫猜想”像磁石一般吸引着陈景润。从此,陈景润开始了摘取数学皇冠上的明珠的艰辛历程...... 哥德巴赫猜想 歌德巴赫猜想
1729年~1764年,哥德巴赫与欧拉保持了长达三十五年的书信往来。
在1742年6月7日给欧拉的信中,哥德巴赫提出了一个命题。他写道:
"我的问题是这样的:
随便取某一个奇数,比如77,可以把它写成三个素数之和:
77=53+17+7;
再任取一个奇数,比如461,
461=449+7+5,
也是这三个素数之和,461还可以写成257+199+5,仍然是三个素数之和。这样,我发现:任何大于7的奇数都是三个素数之和。
但这怎样证明呢?虽然做过的每一次试验都得到了上述结果,但是不可能把所有的奇数都拿来检验,需要的是一般的证明,而不是一个别的检验。"
欧拉回信说:“这个命题看来是正确的,但是他也给不出严格的证明。同时欧拉又提出了另一个命题:任何一个大于2的偶数都是两个素数之和,但是这个命题他也没能给予证明。”
不难看出,哥德巴赫的命题是欧拉命题的推论。事实上,任何一个大于5的奇数都可以写成如下形式:
2N+1=3+2(N-1),其中2(N-1)≥4.
若欧拉的命题成立,则偶数2(N-1)可以写成两个素数之和,于是奇数2N+1可以写成三个素数之和,从而,对于大于5的奇数,哥德巴赫的猜想成立。
但是哥德巴赫的命题成立并不能保
- 小n
-
陈景润摘取数学皇冠上的明珠指的是他破解了哥德巴赫猜想。(具体内容:哥德巴赫提出了‘任何一个偶数均可表示两个素数之和",简称1+1。他一生也没证明出来,之后,哥德巴赫带着一生的遗憾也离开了人世,却留下了这道数学难题。 而陈景润却用一次次数学计算证明了哥德巴赫猜想,把哥德巴赫猜想原来的“1+1”改变成“2+1”,2+1是正确的)
- 朽月十八
-
“哥德巴赫猜想”这一200多年悬而未决的世界级数学难题,曾吸引了各国成千上万位数学家的注意,而真正能对这一难题提出挑战的人却很少。陈景润在高中时代,就听老师极富哲理地讲:自然科学的皇后是数学,数学的皇冠是数论,“哥德巴赫猜想”则是皇冠上的明珠。这一至关重要的启迪之言,成了他一生为之呕心沥血、始终不渝的奋斗目标。
- 余辉
-
哥德巴赫曾提出这样一个命题即:任何一个大于6的偶数均可表示两个奇因素之和,任何一个大于9的奇数都可以表示成3个奇因素之和。这个命题也叫千古之谜“1+1“。我国青年数学家陈景润证明了“1+2”,他的证明方法被誉为“陈氏定理”,陈景润本人也被人称为“推动了群山的发展”,更获得了飞人博尔特的称号。冠上的明陈景润摘取数学皇冠上的明珠指的是他证明了哥德巴赫猜想。其实这句话之前还有一句。曾经陈景润的老师说过:“数学是科学的王后,数论是王后上的王冠,而哥德巴赫猜想则是王冠上的明珠”。因此,陈景润被命名“数学皇冠上的明珠”。
- 阿啵呲嘚
-
随便取某一个奇数,比如77,可以把它写成三个素数之和:
77=53+17+7;
再任取一个奇数,比如461,
461=449+7+5,
也是这三个素数之和,461还可以写成257+199+5,仍然是三个素数之和。这样,我发现:任何大于7的奇数都是三个素数之和。
但这怎样证明呢?虽然做过的每一次试验都得到了上述结果,但是不可能把所有的奇数都拿来检验,需要的是一般的证明,而不是一个别的检验。"
欧拉回信说:“这个命题看来是正确的,但是他也给不出严格的证明。同时欧拉又提出了另一个命题:任何一个大于2的偶数都是两个素数之和,但是这个命题他也没能给予证明。
- 可品
-
哥德巴赫猜想:任意大于1的质数【素数】相加为质数,陈景润计算到1+2,王元计算到了1+1。都是中国数学家。
- 我不懂运营
-
你
- 牛云
-
哥德巴赫猜想
- meira
-
“哥德巴赫猜想”这一200多年悬而未决的世界级数学难题,曾吸引了各国成千上万位数学家的注意,而真正能对这一难题提出挑战的人却很少。陈景润在高中时代,就听老师极富哲理地讲:自然科学的皇后是数学,数学的皇冠是数论,“哥德巴赫猜想”则是皇冠上的明珠。这一至关重要的启迪之言,成了他一生为之呕心沥血、始终不渝的奋斗目标。
陈景润在夜以继日的研究数学为证明“哥德巴赫猜想”,摘取这颗世界瞩目的数学明珠,陈景润以惊人的毅力,在数学领域里艰苦卓绝地跋涉。辛勤的汗水换来了丰硕的成果。1973年,陈景润终于找到了一条简明的证明“哥德巴赫猜想”的道路,当他的成果发表后,立刻轰动世界。其中“1+2”被命名为“陈氏定理”,同时被誉为筛法的“光辉的顶点”。华罗庚等老一辈数学家对陈景润的论文给予了高度评价。世界各国的数学家也纷纷发表文章,赞扬陈景润的研究成果是“当前世界上研究‘哥德巴赫猜想"最好的一个成果”。
- kven
-
“哥德巴赫猜想”这一200多年悬而未决的世界级数学难题,曾吸引了各国成千上万位数学家的注意,而真正能对这一难题提出挑战的人却很少。陈景润在高中时代,就听老师极富哲理地讲:自然科学的皇后是数学,数学的皇冠是数论,“哥德巴赫猜想”则是皇冠上的明珠。这一至关重要的启迪之言,成了他一生为之呕心沥血、始终不渝的奋斗目标。
陈景润在夜以继日的研究数学为证明“哥德巴赫猜想”,摘取这颗世界瞩目的数学明珠,陈景润以惊人的毅力,在数学领域里艰苦卓绝地跋涉。辛勤的汗水换来了丰硕的成果。1973年,陈景润终于找到了一条简明的证明“哥德巴赫猜想”的道路,当他的成果发表后,立刻轰动世界。其中“1+2”被命名为“陈氏定理”,同时被誉为筛法的“光辉的顶点”。华罗庚等老一辈数学家对陈景润的论文给予了高度评价。世界各国的数学家也纷纷发表文章,赞扬陈景润的研究成果是“当前世界上研究‘哥德巴赫猜想"最好的一个成果”。
哥德巴赫猜想
陈景润在福州英华中学读书时,有幸聆听了清华大学调来的一名很有学问的数学教师沈元讲课。他给同学们讲了一道世界数学难题:“大约在200年前,一位名叫哥德巴赫的德国数学家提出了 ‘任何一个大于2的偶数均可表示两个素数之和", 简称(1+1)。他一生也没证明出来,便给俄国圣彼得堡的数学家欧拉写信,请他帮助证明这道难题。欧拉接到信后,就着手计算。他费尽了脑筋,直到离开人世,也没有证明出来。之后,哥德巴赫带着一生的遗憾也离开了人世,却留下了这道数学难题。200多年来,这个哥德巴赫猜想之谜吸引了众多的数学家,从而使它成为世界数学界一大悬案”。老师讲到这里还打了一个有趣的比喻,数学是自然科学皇后,“哥德巴赫猜想”则是皇后王冠上的明珠!这引人入胜的故事给陈景润留下了深刻的印象,“哥德巴赫猜想”像磁石一般吸引着陈景润。从此,陈景润开始了摘取数学皇冠上的明珠的艰辛历程...... 哥德巴赫猜想 歌德巴赫猜想
1729年~1764年,哥德巴赫与欧拉保持了长达三十五年的书信往来。
在1742年6月7日给欧拉的信中,哥德巴赫提出了一个命题。他写道:
"我的问题是这样的:
随便取某一个奇数,比如77,可以把它写成三个素数之和:
77=53+17+7;
再任取一个奇数,比如461,
461=449+7+5,
也是这三个素数之和,461还可以写成257+199+5,仍然是三个素数之和。这样,我发现:任何大于7的奇数都是三个素数之和。
但这怎样证明呢?虽然做过的每一次试验都得到了上述结果,但是不可能把所有的奇数都拿来检验,需要的是一般的证明,而不是一个别的检验。"
欧拉回信说:“这个命题看来是正确的,但是他也给不出严格的证明。同时欧拉又提出了另一个命题:任何一个大于2的偶数都是两个素数之和,但是这个命题他也没能给予证明。”
不难看出,哥德巴赫的命题是欧拉命题的推论。事实上,任何一个大于5的奇数都可以写成如下形式:
2N+1=3+2(N-1),其中2(N-1)≥4.
若欧拉的命题成立,则偶数2(N-1)可以写成两个素数之和,于是奇数2N+1可以写成三个素数之和,从而,对于大于5的奇数,哥德巴赫的猜想成立。
但是哥德巴赫的命题成立并不能保证欧拉命题的成立。因而欧拉的命题比哥德巴赫的命题要 更高。
现在通常把这两个命题统称为哥德巴赫猜想 指陈景润证明了哥德巴赫猜想
- 陶小凡
-
11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 “哥德巴赫猜想”这一200多年悬而未决的世界级数学难题,曾吸引了各国成千上万位数学家的注意,而真正能对这一难题提出挑战的人却很少。陈景润在高中时代,就听老师极富哲理地讲:自然科学的皇后是数学,数学的皇冠是数论,“哥德巴赫猜想”则是皇冠上的明珠。这一至关重要的启迪之言,成了他一生为之呕心沥血、始终不渝的奋斗目标。
陈景润在夜以继日的研究数学为证明“哥德巴赫猜想”,摘取这颗世界瞩目的数学明珠,陈景润以惊人的毅力,在数学领域里艰苦卓绝地跋涉。辛勤的汗水换来了丰硕的成果。1973年,陈景润终于找到了一条简明的证明“哥德巴赫猜想”的道路,当他的成果发表后,立刻轰动世界。其中“1+2”被命名为“陈氏定理”,同时被誉为筛法的“光辉的顶点”。华罗庚等老一辈数学家对陈景润的论文给予了高度评价。世界各国的数学家也纷纷发表文章,赞扬陈景润的研究成果是“当前世界上研究‘哥德巴赫猜想"最好的一个成果”。
哥德巴赫猜想
陈景润在福州英华中学读书时,有幸聆听了清华大学调来的一名很有学问的数学教师沈元讲课。他给同学们讲了一道世界数学难题:“大约在200年前,一位名叫哥德巴赫的德国数学家提出了 ‘任何一个大于2的偶数均可表示两个素数之和", 简称(1+1)。他一生也没证明出来,便给俄国圣彼得堡的数学家欧拉写信,请他帮助证明这道难题。欧拉接到信后,就着手计算。他费尽了脑筋,直到离开人世,也没有证明出来。之后,哥德巴赫带着一生的遗憾也离开了人世,却留下了这道数学难题。200多年来,这个哥德巴赫猜想之谜吸引了众多的数学家,从而使它成为世界数学界一大悬案”。老师讲到这里还打了一个有趣的比喻,数学是自然科学皇后,“哥德巴赫猜想”则是皇后王冠上的明珠!这引人入胜的故事给陈景润留下了深刻的印象,“哥德巴赫猜想”像磁石一般吸引着陈景润。从此,陈景润开始了摘取数学皇冠上的明珠的艰辛历程...... 哥德巴赫猜想 歌德巴赫猜想
1729年~1764年,哥德巴赫与欧拉保持了长达三十五年的书信往来。
在1742年6月7日给欧拉的信中,哥德巴赫提出了一个命题。他写道:
"我的问题是这样的:
随便取某一个奇数,比如77,可以把它写成三个素数之和:
77=53+17+7;
再任取一个奇数,比如461,
461=449+7+5,
也是这三个素数之和,461还可以写成257+199+5,仍然是三个素数之和。这样,我发现:任何大于7的奇数都是三个素数之和。
但这怎样证明呢?虽然做过的每一次试验都得到了上述结果,但是不可能把所有的奇数都拿来检验,需要的是一般的证明,而不是一个别的检验。"
欧拉回信说:“这个命题看来是正确的,但是他也给不出严格的证明。同时欧拉又提出了另一个命题:任何一个大于2的偶数都是两个素数之和,但是这个命题他也没能给予证明。”
不难看出,哥德巴赫的命题是欧拉命题的推论。事实上,任何一个大于5的奇数都可以写成如下形式:
2N+1=3+2(N-1),其中2(N-1)≥4.
若欧拉的命题成立,则偶数2(N-1)可以写成两个素数之和,于是奇数2N+1可以写成三个素数之和,从而,对于大于5的奇数,哥德巴赫的猜想成立。
但是哥德巴赫的命题成立并不能保证欧拉命题的成立。因而欧拉的命题比哥德巴赫的命题要 更高。
现在通常把这两个命题统称为哥德巴赫猜想 指陈景润证明了哥德巴赫猜想
- 真可云
-
陈景润摘取数学皇冠上的明珠指的是他破解了哥德巴赫猜想!