- 振金
-
不同笔记本的电池引脚结构是不同的,具体你要查清引脚结构才能确定你笔记本电池的功能。大概说来,笔记本电池有正极引脚、负极引脚、激活引脚、时钟引脚、数据引脚等,通常需要将激活引脚接地,然后通过正负极引脚连接电路才能提供稳定的10——11V左右的直流稳定电压,如果不接地,正负引脚就算连接进电路回路一般也无法正常输出,当然,有些笔记本电池没有激活引脚。之余你电池的具体充放电和正负激活等引脚你只有自己自己用万用表慢慢尝试了。顺便说一下,电源适配器提供的电压有可能高于电池的额定电压,通过电源适配器连电池而不经过电脑很可能导致电池报销。所以,你要会做变压分压电路才行。
不过楼主为何不直接把电脑返厂维修了,这不就简单了。
- 天涯
-
把池电芯拆出来,全部并联当移动电源使用
当然电压不够高可能充不满,你就买个5v升压芯片来组装就行了,最好能找到移动电源专用的
充电就拿一般的手机充电器正对正,负对负接上就ok
- 寻云
-
恩,想法不错,你也可以搞个灯泡,做个灯啥的,功率还挺大的呢。
- 小n
-
处理方法:
1) 湿法冶金法
该法基于ZN,MNO2可溶于酸的原理,将电池中的ZN,MNO2与酸作用生成可溶性盐进入溶液,溶液经过净化后电解生产金属锌和电解MNO2或生产其它化工产品、化肥等。湿法冶金又分为焙烧-浸出法和直接浸出法。
焙烧-浸出法是将废电池焙烧,使其中的氯化铵、氯化亚汞等挥发成气相并分别在冷凝装置中回收,高价金属氧化物被还原成低价氧化物,焙烧产物用酸浸出,然后从浸出液中用电解法回收金属,焙烧过程中发生的主要反应为:
MEO+C→ME+CO↑
A(S)→A(G)↑
浸出过程发生的主要反应:
ME+2H+→ME2++H2↑
MEO+2H+→ME2++H2O
电解时,阴极主要反应:
ME2++2E→ME
直接浸出法是将废干电池破碎、筛分、洗涤后,直接用酸浸出其中的锌、锰、PP再生颗粒等金属成分,经过滤,滤液净化后,从中提取金属并生产化工产品。
反应式为:
MNO2+4HCL→MNCL2+CL2↑+2H2O
MNO2+2HCL→MNCL2+H2O
MN2O3+6HCL→2MNCL2+CL2↑+3H2O
MNCL2+NAOH→MN(OH)2+2NACL
MN(OH)2+氧化剂→MNO2↓+2HCL
电池中的ZN以ZNO的形式回收,反应式如下:
ZN2++2OH-→ZNO2-→ZN(OH)2(无定型胶体)→ZNO(结晶体)+H2O
(2) 常压冶金法
该法是在高温下使废电池中的金属及其化合物氧化、还原、分解和挥发以及冷凝的过程。
方法一:在较低的温度下,加热废干电池,先使汞挥发,然后在较高的温度下回收锌和其它重金属。
方法二:先在高温下焙烧,使其中的易挥发金属及其氧化物挥发,残留物作为冶金中间产品或另行处理。
湿法冶金和常压治金处理废电池,在技术上较为成熟,但都具有流程长、污染源多、投资和消耗高、综合效益低的共同缺点。1996年,日本TDK公司对再生工艺作了大胆的改革,变回收单项金属为回收做磁性材料。这种做法简化了分离工序,使成本大大降低,从而大幅度提高了干电池再生利用的效益。近年来,人们又开始尝试研究开发一种新的冶金法--真空冶金法:基于废电池各组分在同一温度下具有不同的蒸气压,在真空中通过蒸发与冷凝,使其分别在不同温度下相互分离从而实现综合利用和回收。由于是在真空中进行,大气没有参与作业,故减小了污染。虽然目前对真空冶金法的研究尚少,且还缺乏相应的经济指标,但它明显克服了湿法冶金法和常压冶金法的一些缺点,因而必将成为一种很有前途的方法。
镍镉电池
NI-CD电池含有大量的NI,CD和FE、PP再生颗粒,其中NI是钢铁、电器、有色合金、电镀等方面的重要原料。CD是电池、颜料和合金等方面用的稀有金属,又是有毒重金属,故日本较早即开展了废镍隔电池再生利用的研究开发,其工艺也有干法和湿法两种。干法主要利用镉及其氧化物蒸气压高的特点,在高温下使镉蒸发而与镍分离。湿法则是将废电池破碎后,一并用硫酸浸出后再用H2S分离出镉。
铅蓄电池
铅蓄电池的体积较大而且铅的毒性较强,所以在各类电池中,最早进行回收利用,故其工艺也较为完善并在不断发展中。
在废铅蓄电池的回收技术中,泥渣的处理是关键,废铅蓄电池的泥渣物相主要是PBSO4,PBO2,PBO,PB等。其中PBO2是主要成分,它在正极填料和混合填料中所占重量为41%~46%和24%~28%。因此,PBO2还原效果对整个回收技术具有重要的影响,其还原工艺有火法和湿法两种。火法是将PBO2与泥渣中的其它组分PBSO4,PBO等一同在冶金炉中还原冶炼成PB。但由于产生SO2和高温PB尘第二次污染物,且能耗高,利用率低,故将会逐步被淘汰。湿法是在溶液条件下加入还原剂使PBO2还原转化为低价态的铅化合物。已尝试过的还原剂有许多种。其中,以硫酸溶液中FESO4还原PBO2法较为理想,并具有工业应用价值。
硫酸溶液中FESO4还原PBO2,还原过程可用下式表示: 2BO2(固)+2FESO4(液)+2H2SO4(液)→PBSO4(固)+FE2(SO4)3(液)+2H2O
此法还原过程稳定,速度快,还可使泥渣中的金属铅完全转化,并有利于PBO2的还原:
PB(固)+FE2(SO4)3(液)→PBSO4(固)+2FESO4(液)
PB(固)+PBO(固)+2H2SO4(液)→2PBSO4(固)+2H2O
还原剂可利用钢铁酸洗废水配制,以废治废。NI-MH电池、新型的锂离子电池随着近年手持电话和电子设备的发展得到了大量的应用。在日本,NI-MH电池的产量,1992年达1800万只,1993年达7000万只,到2000年已占市场份额的近50%。可以预计,在不久的将来,将会有大量的废NI-MH电池产生。这些废NI-MH电池的正、负极材料中含有许多有用金属,如镍、钴、稀土等。因此,回收NI-MH电池是十分有益的,有关它们的再生利用技术亦在积极开发中。
笔记本电脑的电池是其灵活性和稳定性的根本,主流笔记本电脑标准配置可充电电池系统。可充电电池系统包括充电电池和电源管理系统等。而电池又是体现笔记本电脑便携性的重要环节。
笔记本电脑使用的电池主要分三种:1.镍铬电池、2.镍氢电池、3.锂电池;它们一般表示为:镍镉Ni-Cd、镍氢Ni-MH、锂电Li。
最早的笔记本电脑都是使用Ni-Cd镍镉电池,由于当时电池技术不够先进,因此镍镉电池有了很多令人头疼的缺点,如:体积大、份量重、容量小、寿命短、有记忆效应等。因此目前镍镉电池基本上已经被淘汰,以下不再对它进行详细介绍。
接下来笔记本电脑开始采用镍氢(NlMH)电池,这种电池具有较好的性价比和较大的功率,同时“镍氢电池是一种最环保的电池,注重环保的国家都大力提倡使用镍氢电池,因为易于回收再利用,且对环境的破坏也最小。不过镍氢电池与锂电相比,还是有一些缺点。充电时间长、重量较重、容量也比锂电小,电池持续放电时间太短,还有记忆效应,它的记忆虽然不像镍镉电池那么大,但还是需要放电,用户必须用尽后再充电。
镍氢电池很快被锂离子(Li-ion)电池替代。锂电很早以前就有了,开始它使用时不太安全,经常会有在充电时出现燃烧、爆裂的情况,这也许是因为锂元素太活跃的缘故。后来就有了改进型的锂离子电池,加入了能抑制锂元素活跃的成份,从而使锂电真正达到了安全、高效、方便,而老的锂电也随之淘汰了。区分它们也很简单,从电池的标识上就能识别,锂电为Li、锂离子电池为Li-ion。现在,笔记本使用的所谓锂电,其实就是锂离子电池。锂离子电池储能密度大,可随时充电并且持续放电时间长,一般在3小时左右。电池的容量大小主要从所标出mAh(毫安时)数值来判断,如3000mAh、4000mAh等,数值越大,电池的容量就越大。
当然锂离子电池也有缺陷,如价格高和充放电次数少等等。锂电池的充放电次数只有400-600次,经过特殊改进的产品也不过800多次。按每天充电一次计算,最好的锂电池也不过两年多。而镍氢电池的充电次数能够达到700次以上,某些质量好的产品充放电可达1200次,这样一比较,镍氢电池要比锂电池长寿,而且镍氢电池的价格也要比锂电池低很多。由此看来,目前还没有十全十美的笔记本电池。
常见品牌的笔记本电池绝大多数为方形。
市场上也有少部分超薄笔记本使用圆柱形电池,如SONY 505系列、东芝PROTEGE系列等。
电池的重量根据材料和机型而变化,比如容量与形状相同的镍氢和锂电,重量却相差很多。
容量大小主要从电池所标出mAh来判断,它的中文名称是毫安时。毫安小时的大小直接关系到笔记本的使用时间,但也不能一概而论。电池的使用时间还与笔记本的配置有很大关系,举个例子说吧,惠普6100笔记本采用了PIII-M、MOBILITY RADEON显卡等多项节能技术的硬件,配合4000mAh电池,使用时间达4小时以上。采用台式机CPU的东芝1800,虽然配备了4500mAh的电池,使用时间也只能达到3小时。能够满足一般外出工作的需要。这也说明笔记本的电池使用时间不仅与mAh有关,硬件的节能技术非常重要。
二、笔记本电池节能新技术
通过电池供电实现移动办公是笔记本电脑区别于台式机的一个重要特征,而有限的电池容量当然无法满足无限的使用时间要求,笔记本电脑越来越高的硬件配置对电池的消耗也越来越大,而笔记本电脑的电池自锂电池广泛采用之后至今仍没有重大的突破,要应付越来越大的耗电量,同时要保证一定的使用时间,那么一些节省电能的新技术就显得非常重要。
笔记本电脑的节省电能的新技术可谓是软硬兼施,软件往往配合专用的硬件使用,下面我们就向大家介绍一下笔记本电脑的节省电能技术。
(一)三种笔记本电脑CPU节电技术
1.Intel SpeedStep技术
Speed Step是Intel CPU使用的一项技术,在移动Pentium-3 600Mhz之后的移动版Pentium处理器中,Intel加入了一个通过降低CPU运行主频来达到降低功耗的技术??SpeedStep。(移动Pentium M处理器中,Intel重新设计了这个技术,被称之为“增强型SpeedStep”)它可以让处理器在两种工作模式之间随意地切换,这两种模式即交流电状态时的最高性能模式(Maximum Performance Mode)和电池状态时的电池优化模式(Battery Optimized Mode)。所谓最高性能模式是指当笔记本电脑与交流电源连接时,可提供与台式机近似的性能;而电池优化模式是指当笔记本电脑使用电池时,会让笔记本电脑的性能发挥与其电池使用时间之间达到最佳的平衡。如使用SpeedStep技术的650MHz和600MHz的处理器,当它们以最高性能模式运行时,可以分别提供650MHz和 600MHz的工作频率,而以电池优化模式运行时,处理器的工作频率则是500MHz。