- 贝勒
-
一、水文地质条件
1.地质背景
实验区在大地构造上位于扬子准地台黔南台陷贵定北东向构造变形区,宽缓的雅水背斜和克度向斜的过渡地带。构造线方向南北。区内出露地层为二叠系中统栖霞、茅口组(P2q-m)、石炭系上统马平组(C2mp)、黄龙组(C2hn)、下统摆佐组(C1b)及大塘组二段(C1d2),岩性以石灰岩、白云质灰岩为主。岩层缓倾,倾角一般小于20°。区内碳酸盐岩广布,岩溶发育,地表以峰丛洼地为主。
2.地下水类型及岩组含水性
巨木地下河流域内出露的碳酸盐岩类地层岩性以质纯、层厚的石灰岩、白云质灰岩为主,岩溶化程度高,地表洼地、落水洞、地下河天窗、竖井等岩溶个体形态发育,分布密度大,碳酸盐岩体中规模大小不等的溶蚀裂隙、溶洞、廊道以及构造成因的裂隙相互沟通,形成网状溶蚀空间,构成地下水储集和运移的含水系统。除补给区石炭系大塘组一段碎屑岩含基岩裂隙水外,其余范围内地下水类型为裂隙-溶洞水。含水层的富水性强但含水极不均匀(图3-3)。
3.地下河结构特征
受岩性和构造控制,碳酸盐岩中地下河在平面上多沿“X”节理追踪发育,形成树枝状地下河系统。
(1)平面分布
巨木地下河系主要由西混、抵塘、望窝三条分支管道组成。其中,抵塘、望窝支流在水淹坝合并后,狭义上称为巨木地下河,流域面积83.0平方千米;西混地下河为独立支流,流域面积45.4平方千米,排泄于大洞脚,两出口间相距约0.4千米。
1)抵塘支流。发源于惠水县抵季乡蛮纳寨,由北西向南东径流,地下河上游具明、暗相间径流特征,中下游为暗流。从源头至抵塘寨河段,地下河通过的地层有石炭系大塘组一段(C1d1)、大塘组二段(C1d2)及摆佐组(C1b)。其中,石炭系大塘组一段(C1d1)碎屑岩分布区,地表溪流较发育,在进入碳酸盐岩出露区后即转为伏流。该支流管道流域区,地貌组合类型主要为丘峰洼地,沿途时有地下水露头分散出露,地下河管道轨迹特征在地表的显示不明显。290号地下河出口是本段流量最大的地下水天然露头点,其形成的地表溪沟自西向东径流,之后于羡塘乡高家院寨327号落水洞注入地下,转为暗流。抵塘寨至高家院寨河段,地下河管道基本沿走向南东的断裂带发育。沿地下河管道延伸方向,落水洞呈串珠状排列。丰水期,地表水沿落水洞渗漏补给巨木地下河。高家院寨至羡塘乡拉扫寨河段,地貌组合类型为峰丛洼地,出露地层岩性为石炭系大塘组(C1d)、黄龙组(C2h)、马平组(C2mp)石灰岩、白云质灰岩,岩溶发育强烈,地下河天窗、有水竖井等显示了地下管道的延伸轨迹。拉扫寨附近地下河轨迹由于受F15断裂影响而出现强烈弯曲现象,由西向东再折向南东进入水淹坝洼地地带。
图3-3 巨木地下河流域水文地质略图
2)望窝支流。发源于惠水县抵季乡龙家湾寨附近,由西向南东径流,全程为暗流。望窝地下河管道在石炭系大塘组(C1d)、摆佐组(C1b)、黄龙组(C2h)及马平组(C2mp)碳酸盐岩地层内穿行。由源头至中游地带,地下河管道沿F15断裂带延伸,地表呈串珠状排列的漏斗状洼地及落水洞发育密集,地下水水位埋藏较深。中下游至出口段,地下河管道追踪走向南东的一组溶蚀裂隙发育,368号溶井附近地面高程为海拔861米,地下水水位埋深7.0~7.4米,结合与周边溶洞、洼地发育方向之间关系的对比分析,望窝地下河在此向北东径流,于板木寨进入水淹坝洼地后直至总出口排泄。
3)西混支流。发源于惠水县羡塘乡西混村,自北向南径流,系明、暗交替式的地下河。流域上游,地形相对平缓,地貌组合类型为峰丛谷地。谷地内地下水水位埋藏较浅,有水竖井、天窗、地下河出口及伏流入口等地下水天然露头较多;西混村到水淹坝之间,地下河全部转为暗流。沿地下河轨迹,地表有地下河天窗、溶井等分布。丰水期地下水位上升,地下水在水淹坝洼地北侧通过天窗溢出地表成明流,在洼地内径流1千米后于南侧的伏流入口重新转入地下。枯水期,地下水水位下降,地下水以暗流形式沿地下河管道通过水淹坝谷底向南径流。
(2)剖面结构
地表发育的地下河天窗、有水竖井等岩溶个体形态,其形态直观地反映出地下河管道的空间形态。
抵塘地下河支流在羡塘乡拉扫寨到水淹坝洼地间沿地下河管道发育方向上,分布有多个地下河天窗、有水竖井,其空间形态多表现为高几米至十余米,宽数十厘米至数米的廊道,规模较大,空间形态复杂多变。丰水期,可见地下水处于明显流动状态;平水期或枯水季节,地下水则呈深潭状。如拉扫327号地下河天窗,洞内北西侧出水口为裂隙,宽约1.2米,中段呈溶潭状,至南东侧演变为廊道(图3-4);368号地下河天窗沿南东向裂隙发育而成,形态表现为宽4~10米,高约20米的宽大廊道。望窝地下河基本上为暗流,至板木寨附近发育的368号竖井,为近于垂直的洞穴,洞内平面形态近似为圆形,其中的地下水呈潭状。西混地下河管道上分布的天窗、竖井形态与上述两地下河的相似。据此,巨木地下河系统管道空间多为廊道、地下溶潭及宽大裂隙的组合。
图3-4 拉扫地下河天窗纵剖面示意图
1—灰岩;2—白云岩;3—石炭系上统黄龙组;4—岩层产状 5—地下水水位线;6—地下水流向
为进一步验证地面调查成果,对巨木地下河系中的抵塘支流拉扫至巨木地下河出口段进行了地下河示踪实验。示踪剂选用食盐,投放量为500千克,投剂点为357号地下河天窗,观测点为巨木地下河出口(图3-5)。同时,为验证西混地下河与巨木地下河之间的连通情况,对西混地下河出口及其在水淹坝的出口和伏流入口也同步进行了观测。试验时段从2003年10月25日开始,至当年12月20日结束,历时55天。
图3-5 示踪试验平面图
在巨木地下河出口地下水样中检测到的Cl-浓度时间历时曲线呈多峰且波峰为舒缓状(图3-6)。多峰特点反映出该地下河系统具有的树枝状多支流特点;而舒缓的波峰、Cl-浓度衰减时间长,则反映了地下河示踪实验段的水力坡度较平缓,管道中发育有类似于潭状的储水空间。据此,推测巨木地下河系中下游段地下河管道空间由众多形态极不规则的廊道、溶潭以及溶蚀裂隙组合而成。对各支流汇集的水淹坝洼地中岩溶地面塌陷坑分布的特征分析,地下河系统在水淹坝地段地下管道成网络状特征。
示踪试验期间,在西混地下河的有关地下水露头点处均未检测到Cl-的变化,说明除丰水期间外,平水和枯水季节两条分支地下河系统间无水力联系。
图3-6 示踪实验地下河出口Cl-含量检测曲线图
4.地下河水动力特征
抵塘支流:拉扫谷地地面高程850米,谷地中KS357号地下河天窗地下水位标高845米,天窗至地下河出口距离为4.05千米,地下河出口水位标高815米,计算平均水力坡度为7.4‰(图3-7)。
图3-7 巨木地下河抵塘支流纵剖面图
西混支流:西混谷地中水位标高845米,水淹坝谷底中地下水位标高为830米,西混谷地与水淹坝谷地相距2.1千米,该河段水力坡度7.14‰;水淹坝谷地至巨木地下河总出口距离长1.4千米,出口地下水位标高815米,计算地下河水力坡度10.7‰(图3-8)。地下河示踪试验以拉扫谷地中357号地下河天窗为投剂点,投剂后首次试剂峰值检测时间为197.1小时,最后一个峰值出现在投剂后700.8小时,由此计算出地下河流速为138.70~488.00米/日,平均313.34米/日。
图3-8 巨木地下河西混支流纵剖面图
对巨木地下河河床水力坡度及示踪试验取得的地下河实际流速、结合巨木地下河系统空间结构分析结果,可以认为:该地下河流域下游地段地下岩溶发育充分,地下空间由“缝”、“隙”、“大厅”等构成形状复杂的网络,地下水则以“管”、“脉”、“潭”等形式赋存在含水岩体中,试验期间为“平水期”,试验成果反映了该时段地下河系统中下游地下水流速缓慢,具有类似“层流”的特征,同时也反映出,地下河系统中强烈发育的岩溶空间具有较强的储集和调节地下水资源的能力。
5.地下水补给、径流、排泄条件
(1)补给
大气降水是区内地下水的唯一补给来源。流域降水量充沛,但降水量年内分配不均,每年5~9月为雨季,降水量占全年降水量的50%~70%,是地下水的主要补给期,其他季节大气降水量偏少,地下水接受补给的量少。地形、地貌条件影响着大气降水入渗补给强度。巨木地下河流域地貌组合类型主要为峰丛洼地,地表覆盖层薄,地形坡度大,落水洞、天窗、竖井及岩体内的溶蚀裂隙极为发育,雨季大气降水迅速通过地表发育的溶蚀裂隙、落水洞等渗入地下补给地下水,具有补给量大、集中、迅速的特点。
(2)径流
流域内地势由北向南倾斜,岩溶发育强烈,地下河延伸方向与地形倾斜方向一致,总体也呈南北向展布。地下岩溶管道是区内地下水集中汇集和运移的场所。地下水接受补给后,在含水岩层中向空间相对较大的地下河分支管道和大的溶蚀裂隙中汇流,再从这些支管道和大裂隙中汇集到地下河主管道内,并在主管道中形成集中径流。受地形条件控制,地下水从北向南径流中,具有径流集中、水利坡度较大、流速快的特点。
(3)排泄
巨木地下河流域中各支流在距出口上游1.4千米的水淹坝洼地汇集后继续向南径流,最终在平塘县塘边镇巨木寨附近,受二叠系上统吴家坪组(P3w)碎屑岩阻隔而集中排泄出地表,转为地表明流。对巨木地下河出口流量动态长期监测的结果,地下河流量丰水期最大为10.34立方米/秒,最枯流量0.19立方米/秒。
6.地下河动态特征
流域内碳酸盐岩广泛分布,地表及地下岩溶强烈发育,无地表水体,大气降水后汇集在地表的地表径流多由地表发育的落水洞、天窗、竖井等集中灌入给地下,成为地下水的主要补给来源,因此,地下水动态成因属于气象类型,受大气降水的控制特征极为明显。另一方面,含水岩组的含水介质为溶洞-管道组合类型,加之受地形条件控制,水力坡度较大,地下水在含水系统中的运动快补快排,动态变幅大。水位和流量动态与大气降水具有同步和暴起暴落的特征。雨季随降水历程,地下河出口流量动态呈现出不规则的多峰、锯齿状(图3-9)。
根据2003年9月~2004年8月对巨木地下河流量一个水文年的长期观测资料,丰水期降水集中,地下河流量增长快,一般在降水后一日内,其出口流量可达到峰值,峰值持续时间短,之后开始衰退。年内地下河出口总流量最大值多现于5~7月,峰值流量为10335.2升/秒,流量最小值出现在翌年1月,为191.7升/秒,年平均流量为1126.9升/秒,流量动态的年变化率达53.9倍。
7.地下水化学特征
地下河流域内地下水无色、无味、透明、清澈。水温16~17℃,为冷水;pH值7.15~7.23,为中性水;地下水总硬度(以CaCO3计)为141.41~277.19毫克/升,为微硬至硬水;矿化度为189.9~442.40.2毫克/升,为淡水。
图3-9 巨木地下河出口流量动态曲线图
地下水类型为HCO3-Ca型。水样中重金属离子及有毒、有害物质均未检出。
地下河出口处地下水类型为HCO3-Ca型水,总硬度132.70~167.54毫克/升,溶解性总固体209.40~272.20毫克/升,pH值8.12~7.80,重金属离子及有毒、有害物质未检出。
8.地下水开发利用条件
巨木地下河流域内有如下特点:
1)地形起伏大,地貌组合类型以峰丛洼地为主,碳酸盐岩含水岩组的含水性极不均匀,地下水以管道流形式赋存,水位埋藏较深,采用深井开采地下水从技术上来说风险较大,成功的几率小。
2)流域下游及出口下游谷地中耕地多分布在为820~850米高程,而出口处水面海拔高程为815米,天然条件下丰富的地下河水资源没有自流引水开发利用的条件,必须采取相应的提水工程措施方可达到目的。
3)流域内及下游地带各乡镇的经济收入主要来源于农业,社会与经济发展水平低,农民经济收入不高,经济承受能力不强。采用电力从地下河天窗及出口提水,运行成本较高,群众难以承受高昂的运行费用。
客观自然地理环境和岩溶水文地质条件使得农田、集镇和村寨分布位置较高,农田灌溉及人畜饮水严重缺乏;地下水资源丰富但出露位置过低难以得到利用;采用电力提水成本高,群众又难以接受。因此,合理协调三者之间的矛盾,采用合理的地下水开采方式,达到既有效开采地下水,又使地下水开采的运行成本降低,使群众乐于接受,是地下水开发工程成功的关键所在。
通过分析认为,巨木地下河具有丰水期流量大、枯季流量偏小,下游段地下空间规模大、调蓄地下水的能力强的特点。结合出口地形条件,可在出口地带筑坝拦蓄地下水建地下水库,一方面利用地下水库库容调蓄地下水量,另一方面可达到抬高地下水位,提高对下游地区耕地灌溉有效面积的目的。具有投资少、见效快、社会和经济效益好的优点。
二、岩土地球化学背景
(一)母土微量元素及含量
为研究流域内岩土的地球化学背景,对区内4种不同岩性分布区的母土分别进行了采样,并送室内进行了分析。共采集组合样4组,分别分析了19种元素和有机质含量,总体结果为:
吴家坪组(P3w)硅酸盐岩分布区母土微量元素含量总和为19550.80×10-6。其中,N,P,K的含量分别达到了800.00×10-6,540.00×10-6,7800.00×10-6;Mn,Mo,Zn,Cu,V,B的平均含量较高;Se平均含量达到了1.03×10-6,属偏高水平;微量元素La、Ce含量的平均值也较高,对农作物生长有促进作用;重金属元素中,Cd,Hg平均含量低,而Pb含量的平均值为24.00×10-6,As为10.70×10-6,Cr为140.00×10-6;有机质7.18×10-6(表3-1)。这些成分,在当地农产品成分中也有所反映。
表3-1 示范区母土微量元素含量统计
二叠系中统栖霞茅口组(P2q-m)及三叠系(T)石灰岩白云岩分布区母土微量元素含量总和仅为(7898.14~9727.56)×10-6。其中,N,P,K的含量分别为(0~1200)×10-6,(210~310)×10-6和(3230~3480)×10-6,总体较吴家坪组中同类元素含量低;Mn,Zn,Cu,B的平均含量及对农作物生长有促进作用的稀土元素La,Ce含量远低于吴家坪组硅质类岩;Se平均含量为(0.52~0.61)×10-6,属偏低水平;重金属元素中,As含量为(18.3~24.8)×10-6、Cr为(186~251)×10-6,远高于吴家坪组碎屑岩,Cd,Hg,Pb平均含量与吴家坪组相近;有机质1.03%~1.17%,低于吴家坪组碎屑岩。
(二)耕植土微量元素及含量
为和母土成分进行对比,在区内相对应的岩石分布区耕植土中采集了同样数量的组合样,检测并统计了其中的微量元素含量,结果为:石灰岩区耕植土微量元素含量总和为8318.70×10-6,而在白云岩中为11711.16×10-6,碎屑岩为26991.76×10-6。经比较,硅酸盐岩类地层区耕植土微量元素含量高出碳酸盐岩类地层区一倍以上(表3-2)。
表3-2 示范区耕植土微量元素含量统计 单位: 10-6
(三)耕植土营养元素有效态及含量
检测统计结果,区内耕植土中有效磷含量为22.52×10-6,有效钾为95.22×10-6,铵态氮为36.08×10-6,硝态氮为14.26×10-6,有效硫为48.03×10-6,有机质为3.78%(表3-3)。
表3-3 示范区耕植土有效态含量统计
三、研究区主要地质环境问题
(一)岩溶干旱
综观整个流域,地貌组合类型以峰丛洼地为主,间有峰丛槽谷及丘峰洼地等。在巨木地下河抵塘、望窝支流流域区内,人口、耕地大多分散于深陷的小型洼地内,地下水位埋藏较深,局部发育有地表径流的地段,其水源均来自丰水期地下水水位上升后涌至地面的排泄量,一般在暴雨后数日至数十日即断流,气候型特征明显;在西混地下河流域范围,上游地带的洼地规模相对较大,耕地、人口分布较为集中,洼地中地下水位埋深相对较浅,地下河呈明、暗交替状;巨木地下河出口以下,地形平缓,耕地连片,人口稠密,系当地集商贸与产粮为一体的经济产业区,但因地表河床高程低而导致水资源开发难度大。因而,干旱缺水是全流域最为突出的环境问题。据统计,巨木地下河出口以上的缺水人口约为1.5万人,缺水灌溉的耕地约为8000余亩;出口以下,无可靠灌溉水源的耕地1.2万亩,1.6万余人及1万头大牲畜饮水缺乏。
(二)石漠化
实验工程实施前,流域内石漠化问题较严重,已成岩溶石漠化的地块主要分布流域下游的交岗至地下河出口间的石灰岩分布区,以及地下河下游的塘边、克度一带,岩溶石漠化程度以中度为主,轻度次之,重度岩溶石漠化面积分布较小(图3-10)。
(三)岩溶洪涝
区内岩溶洪涝的发生频率较高,具有普遍性,其致灾原因为:巨木地下河系统河床具“正平衡剖面”特征。各支流中上游地段地下水水位埋深较大,水力坡度相对较陡,而流域下游地段拉扫寨至巨木地下河总出口,地下水位埋藏较浅,地下水水力坡度较缓。地下河流域补给面积大,流域区多为基岩裸露的峰丛洼地、接受大气降水入渗补给的能力强。暴雨期流域上游来水量大,至下游—出口段地下河管道排泄能力不足,地下水排泄不畅而壅水,地下水位上升,导致谷地、洼地淹没成灾。其中的典型代表是流域下游的水淹坝洼地及其相邻的西混谷地、抵塘谷地。三个谷地分布面积分别为1.0平方千米、1.8平方千米、0.8平方千米,连年受灾粮食歉收。其中水淹坝谷地因连年遭受洪涝灾害,洼地内1000余亩耕地已被迫荒弃多年。
图3-10 实验区石漠化分布图
图3-11 巨木地下河出口段最大泄洪能力图
水淹坝谷地距巨木地下河出口900米,为掌握巨木地下河出口流量和水淹坝岩溶谷地洪涝淹没关系,2004年6~8月开展了巨木地下河从水淹坝到出口河段的河道泄水能力的专题研究。根据实际对巨木地下河出口流量动态及对水淹坝淹没情况监测资料,巨木地下河出口段地下河道的最大泄洪能力为10.34立方米/秒(图3-11),当上游来水量达到该值时,即造成水淹坝等谷地、洼地的淹没。