- 还要旺仔
-
逻辑思维方法作为一种科学的思维方法,是行政决策科学化进程中必备工具之一,掌握逻辑思维方法对于避免行政决策失误、促进行政决策科学化、重塑现代理性思维具有重要意义。下面我为你整理具有侦探逻辑思维的题目,希望能帮到你。
关于具有侦探逻辑思维的题目
1. “上个星期天你在哪里?”警长询问一个嫌疑人。“我在登山。你看,这就是当时我在山顶上的照片。登上山顶后,我很有成就感,就决定喝一罐啤酒,并把相机放在一个合适的位置,自拍下了开启啤酒的一瞬间。回来后,我把这张照片命名为u2018痛饮庆功酒u2019。”那个嫌疑人一边说,一边拿出一张照片给警长看。警长看了看照片说:“风景很不错,山腰上还有云雾,你登上的那座山一定很高吧?”“嗨,可高啦,有3500米呢。”那人以为探长相信他不在场的证明,颇为得意地回答。“可是,”警长突然脸色一变,声色俱厉地说,“你在撒谎,这张照片是假的!”这张照片究竟有何破绽?
2. 一天晚上下了一场大雪,第二天早上气温下降到了-5度。刑警询问案件的嫌疑犯,当问到她有无昨夜11点左右不在作案现场的证据时,这个独身女人回答:“昨晚9点钟左右,我那台旧电视出了毛病,造成短路停了电。因为我缺乏电的知识,无法自己修理,就吃了一片安眠药睡觉了。今天早晨,就是刚才不到30分钟之前,我给电工打了电话,他告诉我只要把大门口的电闸合上就会有电了。”可是,当刑警扫视完整个屋子,目光落到窗边的大玻璃鱼缸里游动的鱼时,他立马识破了女人的谎言。刑警发现了什么?
3. 一天晚上,海滨城市F市遭遇了台风和暴雨的袭击。次日早晨,有人在公园发现一具女尸,浑身湿淋淋地趴在地上,旁边是死者的棒球帽。除此之外,现场没有留下任何痕迹,也找不到目击证人。经法医验尸,死者至少是在20个小时以前死亡的。小苏警官推断,这里并不是凶杀现场,死者是被人杀害后从别处移到这里的。请问,小苏警官是如何作出判断的呢?
4. 一件凶杀案的嫌疑人正在山里野营,小苏侦探驱车前往调查。在群山之间的一片绿茵上,小苏进入嫌疑人的帐篷。在帐篷内的吊床边,有两个金属制品在绿草地上闪闪发光,是两颗步枪子弹壳,与杀害死者的子弹口径相同。嫌疑人却辩解说这是他在山上捡来的,他在这个帐篷里已经住了一个多月了,根本没去过市区。小苏说:“你需要重新编造谎言。”那么,小苏从哪里看出了破绽呢?
提示:草的生长离不开阳光
5. 小苏的别墅同莫利的寓所相距不远。一天夜里,莫利跑来告诉小苏说:“托里是我的客人,刚才我俩正在看电视,突然电灯全灭了。我正要起身查看原因,有人闯进来对着托里开了两枪后逃走了。”小苏进入寓所,拉开电闸,发现屋子里的电视机也是关着的。他大喊:“够了,莫利涉嫌谋杀!”请问:小苏为什么作出这一判断?
关于具有侦探逻辑思维的题目
【1】周雯的妈妈是豫林水泥厂的化验员。 一天,周雯来到化验室做作业。做完后想出去玩。 "等等,妈妈还要考你一个题目,"她接着说,"你看这6只做化验用的玻璃杯,前面3只盛满了水,后面3只是空的。你能只移动1只玻璃杯,就便盛满水的杯子和空杯子间隔起来 吗?" 爱动脑筋的周雯,是学校里有名的"小机灵",她只想了一会儿就做到了。请你想想看,"小机灵"是怎样做的?
【2】假设有一个池塘,里面有无穷多的水。现有2个空水壶,容积分别为5升和6升。问题是如何只用这2个水壶从池塘里取得3升的水。
【3】三个小伙子同时爱上了一个姑娘,为了决定他们谁能娶这个姑娘,他们决定用手枪进行一次决斗。小李的命中率是30%,小黄比他好些,命中率是50%,最出色的枪手是小林,他从不失误,命中率是100%。由于这个显而易见的事实,为公平起见,他们决定按这样的顺序:小李先开枪,小黄第二,小林最后。然后这样循环,直到他们只剩下一个人。那么这三个人中谁活下来的机会最大呢?他们都应该采取什么样的策略?
【4】一间囚房里关押着两个犯人。每天监狱都会为这间囚房提供一罐汤,让这两个犯人自己来分。起初,这两个人经常会发生争执,因为他们总是有人认为对方的汤比自己的多。后来他们找到了一个两全其美的办法:一个人分汤,让另一个人先选。于是争端就这么解决了。可是,现在这间囚房里又加进来一个新犯人,现在是三个人来分汤。必须寻找一个新的方法来维持他们之间的和平。该怎么办呢?
按:心理问题,不是逻辑问题
【5】在一张长方形的桌面上放了n个一样大小的圆形硬币。这些硬币中可能有一些不完全在桌面内,也可能有一些彼此重叠;当再多放一个硬币而它的圆心在桌面内时,新放的硬币便必定与原先某些硬币重叠。请证明整个桌面可以用4n个硬币完全覆盖
【6】一个球、一把长度大约是球的直径2/3长度的直尺.你怎样测出球的半径?方法很多,看看谁的比较巧妙
【7】五个大小相同的一元人民币硬币。要求两两相接触,应该怎么摆?
【8】猜牌问题
S 先生、P先生、Q先生他们知道桌子的抽屉里有16张扑克牌:红桃A、Q、4 黑桃J、8、4、2、7、3 草花K、Q、5、4、6 方块A、5。约翰教授从这16张牌中挑出一张牌来,并把这张牌的点数告诉 P先生,把这张牌的花色告诉Q先生。这时,约翰教授问P先生和Q 先生:你们能从已知的点数或花色中推知这张牌是什么牌吗? 于是,S先生听到如下的对话:P先生:我不知道这张牌。
Q先生:我知道你不知道这张牌。
P先生:现在我知道这张牌了。
Q先生:我也知道了。
听罢以上的对话,S先生想了一想之后,就正确地推出这张牌是什么牌。
请问:这张牌是什么牌?
【9】一个教授逻辑学的教授,有三个学生,而且三个学生均非常聪明!
一天教授给他们出了一个题,教授在每个人脑门上贴了一张纸条并告诉他们,每个人的纸条上都写了一个正整数,且某两个数的和等于第三个!(每个人可以看见另两个数,但看不见自己的)
教授问第一个学生:你能猜出自己的数吗?回答:不能,问第二个,不能,第三个,不能,再问第一个,不能,第二个,不能,第三个:我猜出来了,是144!教授很满意的笑了。请问您能猜出另外两个人的数吗?
【10】某城市发生了一起汽车撞人逃跑事件,该城市只有两种颜色的车,蓝色15% 绿色85%。事发时有一个人在现场看见了他指证是蓝车,但是根据专家在现场分析,当时那种条件能看正确的可能性是80%,那么,肇事的车是蓝车的概率到底是多少?
【11】有一人有240公斤水,他想运往干旱地区赚钱。他每次最多携带60公斤,并且每前进一公里须耗水1公斤(均匀耗水)。假设水的价格在出发地为0,以后,与运输路程成正比,(即在10公里处为10元/公斤,在20公里处为20元/公斤......),又假设他必须安全返回,请问,他最多可赚多少钱?
【12】现在共有100匹马跟100块石头,马分3种,大型马;中型马跟小型马。其中一匹大马一次可以驮3块石头,中型马可以驮2块,而小型马2头可以驮一块石头。问需要多少匹大马,中型马跟小型马?(问题的关键是刚好必须是用完100匹马)
【13】1=5 2=15 3=215 4=2145 那么5=?
【14】有2n个人排队进电影院,票价是50美分。在这2n个人当中,其中n个人只有50美分,另外n个人有1美元(纸票子)。愚蠢的电影院开始卖票时1分钱也没有。
问: 有多少种排队方法 使得 每当一个拥有1美元买票时,电影院都有50美分找钱
注:1美元=100美分;拥有1美元的人,拥有的是纸币,没法破成2个50美分
【15】一个人花8块钱买了一只鸡,9块钱卖掉了,然后他觉得不划算,花10块钱又买回来了,11块卖给另外一个人。问他赚了多少?
关于具有侦探逻辑思维的题目
【1】在一天的24小时之中,时钟的时针、分针和秒针完全重合在一起的时候有几次?都分别是什么时间?你怎样算出来的?
【2】你有两个罐子,50个红色弹球,50个蓝色弹球,随机选出一个罐子,随机选取出一个弹球放入罐子,怎么给红色弹球最大的选中机会?在你的计划中,得到红球的准确几率是多少?
【3】你有四个装药丸的罐子,每个药丸都有一定的重量,被污染的药丸是没被污染的重量+1.只称量一次,如何判断哪个罐子的药被污染了?
【4】对一批编号为1~100,全部开关朝上(开)的灯进行以下*作:凡是1的倍数反方向拨一次开关;2的倍数反方向又拨一次开关;3的倍数反方向又拨一次开关u2026u2026问:最后为关熄状态的灯的编号。
【5】想象你在镜子前,请问,为什么镜子中的影像可以颠倒左右,却不能颠倒上下?
【6】一群人开舞会,每人头上都戴着一顶帽子。帽子只有黑白两种,黑的至少有一顶。每个人都能看到其它人帽子的颜色,却看不到自己的。主持人先让大家看看别人头上戴的是什幺帽子,然后关灯,如果有人认为自己戴的是黑帽子,就打自己一个耳光。第一次关灯,没有声音。于是再开灯,大家再看一遍,关灯时仍然鸦雀无声。一直到第三次关灯,才有劈劈啪啪打耳光的声音响起。问有多少人戴着黑帽子?
【7】两个圆环,半径分别是1和2,小圆在大圆内部绕大圆圆周一周,问小圆自身转了几周?如果在大圆的外部,小圆自身转几周呢?
【8】 1元钱一瓶汽水,喝完后两个空瓶换一瓶汽水,问:你有20元钱,最多可以喝到几瓶汽水?
【9】有3顶红帽子,4顶黑帽子,5顶白帽子。让10个人从矮到高站成一队,给他们每个人头上戴一顶帽子。每个人都看不见自己戴的帽子的颜色,却只能看见站在前面那些人的帽子颜色。(所以最后一个人可以看见前面9个人头上帽子的颜色,而最前面那个人谁的帽子都看不见。现在从最后那个人开始,问他是不是知道自己戴的帽子颜色,如果他回答说不知道,就继续问他前面那个人。假设最前面那个人一定会知道自己戴的是黑帽子。为什么?
【10】假设排列着100个乒乓球,由两个人轮流拿球装入口袋,能拿到第100个乒乓球的人为胜利者。条件是:每次拿球者至少要拿1个,但最多不能超过5个,问:如果你是最先拿球的人,你该拿几个?以后怎么拿就能保证你能得到第100个乒乓球?
【11】卢姆教授说:“有一次我目击了两只山羊的一场殊死决斗,结果引出了一个有趣的数学问题。我的一位邻居有一只山羊,重54磅,它已有好几个季度在附近山区称王称霸。后来某个好事之徒引进了一只新的山羊,比它还要重出3磅。开始时,它们相安无事,彼此和谐相处。可是有一天,较轻的那只山羊站在陡峭的山路顶上,向它的竞争对手猛扑过去,那对手站在土丘上迎接挑战,而挑战者显然拥有居高临下的优势。不幸的是,由于猛烈碰撞,两只山羊都一命呜呼了。
现在要讲一讲本题的奇妙之处。对饲养山羊颇有研究,还写过书的乔治.阿伯克龙比说道:“通过反复实验,我发现,动量相当于一个自20英尺高处坠落下来的30磅重物的一次撞击,正好可以打碎山羊的脑壳,致它死命。”如果他说得不错,那么这两只山羊至少要有多大的逼近速度,才能相互撞破脑壳?你能算出来吗?
【12】据说有人给酒肆的老板娘出了一个难题:此人明明知道店里只有两个舀酒的勺子,分别能舀7两和11两酒,却硬要老板娘卖给他2两酒。聪明的老板娘毫不含糊,用这两个勺子在酒缸里舀酒,并倒来倒去,居然量出了2两酒,聪明的你能做到吗?
【13】已知: 每个飞机只有一个油箱, 飞机之间可以相互加油(注意是相互,没有加油机)一箱油可供一架飞机绕地球飞半圈,问题:为使至少一架飞机绕地球一圈回到起飞时的飞机场,至少需要出动几架飞机?(所有飞机从同一机场起飞,而且必须安全返回机场,不允许中途降落,中间没有飞机场)
【14】在9个点上画10条直线,要求每条直线上至少有三个点?
【15】一个岔路口分别通向诚实国和说谎国。来了两个人,已知一个是诚实国的,另一个是说谎国的。诚实国永远说实话,说谎国永远说谎话。现在你要去说谎国,但不知道应该走哪条路,需要问这两个人。请问应该怎么问?